Skip to main content
Log in

Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P., Pasquini, D.: Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manag. 121, 202–209 (2013)

    Article  Google Scholar 

  2. Habibi, Y., Lucia, L.A., Rojas, O.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 11, 3479–3500 (2010)

    Article  Google Scholar 

  3. Lam, E., Male, K.B., Chong, J.H., Leung, A.C., Luong, J.H. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283–290 (2012)

    Article  Google Scholar 

  4. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd. Polym. 90, 735–764 (2012)

    Article  Google Scholar 

  5. Siqueira, G., Bras, J., Dufresne, A.: Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers. 2, 728–765 (2010)

    Article  Google Scholar 

  6. Dos Santos, M.R., Wilson Pires, F.N., Ferreira Martins, S.H.A., Dantas, D.N.O., Pasquini, D.: Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Corps Products 50, 707–714 (2013)

    Article  Google Scholar 

  7. Flauzino, N.W.P., Silvério, H.A., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Corps Products 42, 480–488 (2012)

    Article  Google Scholar 

  8. Rafieiana, F., Shahedi, M., Keramat, J., Simonsen, J.: Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind. Corps Products 53, 282–288 (2014)

    Article  Google Scholar 

  9. Moon, R.J., Martini, A., Nnain, J., Simonsen, J., Jeff, Y.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2012)

    Article  Google Scholar 

  10. Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2011)

    Article  Google Scholar 

  11. Xiao, X., Miller, P.R., Narayan, R.J., Brozik, S.M., Wheeler, D.R., Brener, I., Wang, J., Burckel, D.B., Polsky, R.: Simultaneous detection of dopamine, ascorbic acid and uric acid at lithographically-defined 3D graphene electrodes. Electroanalysis. 26, 52–56 (2014)

    Article  Google Scholar 

  12. Wang Q., Li M., Szunerits S., Boukherroub R.: Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis 26, 156–163 (2014)

    Article  Google Scholar 

  13. Xiao, H., Xiaoying, Q., Freddy, B., Hua, Z.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  14. Teixeira, S., Ferreira, N.S., Conlan, R.S., Guy, O.J., Sales, M.G.F.: Chitosan/AuNPs modified graphene electrochemical sensor for label-free human chorionic gonadotropin detection. Electroanalysis. 26, 2591–2598 (2014)

    Article  Google Scholar 

  15. Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Recent advances in graphene-based biosensors. Biosensens. Bioelectron. 12, 4637–4648 (2011)

    Article  Google Scholar 

  16. Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2009)

    Article  Google Scholar 

  17. Qi, W., Li, M., Szunerits, S., Boukherroub, R.: Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis. 26, 156–163 (2014)

    Article  Google Scholar 

  18. Yiming, Z., Xun, Y., Yuan, W., Yi, Ch: One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J. Mater. Chem. 22, 7245 (2012)

    Article  Google Scholar 

  19. Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y., Kaner, R.B.: A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano. 4, 3845 (2012)

    Article  Google Scholar 

  20. Paredes, J.I., Villar-Rodil, S., Fern_andez-Merino, M.J., Guardia, L., Martínez-Alonso, A., Tascon, J.M.: Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 21, 298 (2011)

    Article  Google Scholar 

  21. Chen, Y., Zhang, X., Yu, P., Ma, Y.: Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 30, 4527–4529 (2009)

    Article  Google Scholar 

  22. Li, H., Pang, S., Feng, X., Mullen, K., Bubeck: Handbook of carbon nano materials C. Chem. Commun. 46, 6243 (2010)

    Article  Google Scholar 

  23. Liang, Y., Wu, D., Feng, X., Mullen, K.: Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679 (2009)

    Article  Google Scholar 

  24. Ai, K., Liu, Y., Lu, L., Cheng, X., Huo, L.: Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. J. Mater. Chem. 21, 14917–14924 (2011)

    Article  Google Scholar 

  25. Pham, V.H., Cuong, T.V., Hur, S.H., Oh, E., Kim, E.J., Shin, E.W., Chung, J.S.: Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem. 21, 3371–3377 (2011)

    Article  Google Scholar 

  26. Lin, Z., Yao, Y., Li, Z., Liu, Y., Li, Z., Wong, C.-P.: J. Phys. Chem. C. 114, 14819 (2010)

    Article  Google Scholar 

  27. Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., Zhang, X.: Environment-friendly method to produce graphene that employs vitamin C and amino acid. J. Chem. Mater. 22, 2213–2218 (2010)

    Article  Google Scholar 

  28. Dua, V., Surwade, S.P., Ammu, S., Agnihotra, S.R., Jain, S.Roberts, K.E., Park, S., Ruoff, R.S., Manohar, S.K.: All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010)

    Article  Google Scholar 

  29. Fang, M., Long, J., Zhao, W., Wang, L., Chen, G.: American chemical society ph-responsive chitosan-mediated graphene dispersions. Langmuir. 26(22), 16771–16774 (2010)

    Article  Google Scholar 

  30. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    Article  Google Scholar 

  31. Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fern_andez, P., Martínez-Alonso, A., Tascon, J.M.D., Vitamin, C.: Is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 114, 6426–6432 (2010)

    Article  Google Scholar 

  32. Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 4, 2429–2437 (2010)

    Article  Google Scholar 

  33. Liu, J., Fu, S., Yuan, B., Li, Y., Deng, Z.: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010)

    Article  Google Scholar 

  34. Wang, Y., Shi, Z.X., Yin, J.: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces. 3, 1127–1133 (2011)

    Article  Google Scholar 

  35. Hummers, W.S. Jr., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  36. George, J., Sabapathi, S.N.: Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015)

    Article  Google Scholar 

  37. Nurain, J., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Corps Products 37, 93–99 (2012)

    Article  Google Scholar 

  38. Ping, L., Hsieh, Y.L.: preparation and properties of cellulose nanocrystals/rods, spheres and network. Carbohydr. Polym. 82, 329–336 (2010)

    Article  Google Scholar 

  39. Oh, S.Y., Yoo, D. I., Shin, Y., Seo, G.: FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd. Res. 340, 417–428 (2005)

    Article  Google Scholar 

  40. Sebe, G., Ham-Pichavant, F., Ibarboure, E., Akissi, L., Chantal, K., Tingaut, Ph.: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol. 13, 570–578 (2012)

    Article  Google Scholar 

  41. Borysiak, S., Doc zekalska, B.: Research into the mercerization process of beech wood using the waxs method fibres. Text East Eur. 16, 101–103 (2008)

    Google Scholar 

  42. Idström, A., Brelid, H., Nydén, M., Nordstierna, L.: CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system. Carbohyd. Polym. 92, 881–884 (2013)

    Article  Google Scholar 

  43. Ishikawa, A., Okano, T., Sugiyama, J.: Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. J. Polym. 38, 463–468 (1997)

    Article  Google Scholar 

  44. Brinchia, L., Kenny, J.M., Cotana, F., Fortunati, E.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd. Polym. 94, 154–169 (2013)

    Article  Google Scholar 

  45. Haiping, Y., Rong, Y., Hanping, Ch., Dong H. L, Chuguang. Z., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788 (2007)

    Article  Google Scholar 

  46. Zhang, X., Yang, W., Blasiak, W.: Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis. Fuel, 109, 476–483 (2013)

    Article  Google Scholar 

  47. Chang, C.-P., Wang, I.-C., Hung, K.-J., Perng, Y.-S.: Preparation and characterization of nanocrystalline cellulose by acid hydrolysis of cotton linter. Taiwan J. For. Sci. 25(3), 231–244 (2010)

    Google Scholar 

  48. Jeong, H.D., Yoon, C.R., Lee, J.H., Band, D.S.: Preparation and characterization of cellulose nano-whiskers extracted from microcrystalline cellulose by acid hydrolysis. Elastom. Compos. 45, 51–57 (2010)

    Google Scholar 

  49. Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  50. Light cap, I., Kamat, P.V.: Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 46, 2235 (2013)

    Article  Google Scholar 

  51. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano. Res. 1, 203 (2008)

    Article  Google Scholar 

  52. Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B.H., Min, D.-H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211 (2013)

    Article  Google Scholar 

  53. Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y.: Graphene and graphene oxide: bio functionalization and applications in biotechnology. Trends Biotechnol. 29, 205 (2011)

    Article  Google Scholar 

  54. Pyun, J.: Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46 (2011)

    Article  Google Scholar 

  55. Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Func. Mater. 20, 2255 (2010)

    Article  Google Scholar 

  56. Dreyer, D.R., Jia, H.-P., Bielawski, C.W.: Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813 (2010)

    Google Scholar 

  57. Kim, J., Cote, L.J., Franklin Kim, F., Yuan, W., Shull, K.R., Huang, J.: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180 (2010)

    Article  Google Scholar 

  58. Dohyung, K., Seung Jae, Y., Yern Seung, K., Haesol, J., Chong Rae P.: Simple and cost-effective reduction of graphite oxide by sulfuric acid. Carbon 50, 3229–3232 (2012)

    Article  Google Scholar 

  59. Mousumi, M., Krishanu, Ch., Kajari, K., Saibal, G., Dipali, B.: Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. Diamond Relat. Mater. 37, 74–79 (2013)

    Article  Google Scholar 

  60. Sheng, Y., Wenbo, Y., Dazhen, H., Caifeng, Ch, Hao, L., Xiaojing, Y.: A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2, 8827–8832 (2012)

    Article  Google Scholar 

  61. Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 4(4), 2429–2437 (2010)

    Article  Google Scholar 

  62. Zhang, S., Shao, Y., Liao, H., Engelhard, M.H., Yin, G., Lin, Y.: Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano. 5, 1785–1791 (2011)

    Article  Google Scholar 

  63. Hassan, H.M.A., Abdelsayed, V., Khder, A., AbouZeid, K.M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A.: Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837 (2009)

    Article  Google Scholar 

  64. Mc Allister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso M. et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)

    Article  Google Scholar 

  65. Yang, S., Yue, W., Huang, D., Chen, C., Lin, H., Yang, X.: A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2, 8827–8832 (2012)

    Article  Google Scholar 

  66. Mousumi, M., Krishanu, Ch, Kajari, K., Saibal, G., Banerjee, D.: Reduction of graphene oxide through a green and metal-free approach using formic acid. Diamond Relat Mater. 37, 74–79 (2013)

    Article  Google Scholar 

  67. Petit, C., Seredych, M., Bandosz, T.J.: Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by The Tunisian Ministry of Higher Education and Scientific Research and the Portuguese Science and Technology Foundation through projects FCT/5964/27/5/2013/S, PTDC/FIS/NAN/0117/2014 and by FEDER funds through the COMPETE 2020 Program and National Funds through FCT - Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013/S and by the Portuguese Nuclear Magnetic Resonance Network (PTNMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Dakhlaoui Omrani.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2958 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khili, F., Borges, J., Almeida, P.L. et al. Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste Biomass Valor 10, 1913–1927 (2019). https://doi.org/10.1007/s12649-018-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0202-4

Keywords

Navigation