Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1913–1927 | Cite as

Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration

  • Faouzia Khili
  • Joao Borges
  • Pedro L. Almeida
  • Rabah Boukherroub
  • Amel Dakhlaoui OmraniEmail author
Original Paper

Abstract

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

Keywords

Cellulose agrosources Cellulose nanocrystals Sulfuric acid hydrolysis Cellulose nanorods Graphene oxide Reduced graphene oxide composite 

Notes

Acknowledgements

This work was partly supported by The Tunisian Ministry of Higher Education and Scientific Research and the Portuguese Science and Technology Foundation through projects FCT/5964/27/5/2013/S, PTDC/FIS/NAN/0117/2014 and by FEDER funds through the COMPETE 2020 Program and National Funds through FCT - Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013/S and by the Portuguese Nuclear Magnetic Resonance Network (PTNMR).

Supplementary material

12649_2018_202_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2958 KB)

References

  1. 1.
    Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P., Pasquini, D.: Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manag. 121, 202–209 (2013)Google Scholar
  2. 2.
    Habibi, Y., Lucia, L.A., Rojas, O.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 11, 3479–3500 (2010)Google Scholar
  3. 3.
    Lam, E., Male, K.B., Chong, J.H., Leung, A.C., Luong, J.H. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283–290 (2012)Google Scholar
  4. 4.
    Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd. Polym. 90, 735–764 (2012)Google Scholar
  5. 5.
    Siqueira, G., Bras, J., Dufresne, A.: Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers. 2, 728–765 (2010)Google Scholar
  6. 6.
    Dos Santos, M.R., Wilson Pires, F.N., Ferreira Martins, S.H.A., Dantas, D.N.O., Pasquini, D.: Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Corps Products 50, 707–714 (2013)Google Scholar
  7. 7.
    Flauzino, N.W.P., Silvério, H.A., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Corps Products 42, 480–488 (2012)Google Scholar
  8. 8.
    Rafieiana, F., Shahedi, M., Keramat, J., Simonsen, J.: Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind. Corps Products 53, 282–288 (2014)Google Scholar
  9. 9.
    Moon, R.J., Martini, A., Nnain, J., Simonsen, J., Jeff, Y.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2012)Google Scholar
  10. 10.
    Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2011)Google Scholar
  11. 11.
    Xiao, X., Miller, P.R., Narayan, R.J., Brozik, S.M., Wheeler, D.R., Brener, I., Wang, J., Burckel, D.B., Polsky, R.: Simultaneous detection of dopamine, ascorbic acid and uric acid at lithographically-defined 3D graphene electrodes. Electroanalysis. 26, 52–56 (2014)Google Scholar
  12. 12.
    Wang Q., Li M., Szunerits S., Boukherroub R.: Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis 26, 156–163 (2014)Google Scholar
  13. 13.
    Xiao, H., Xiaoying, Q., Freddy, B., Hua, Z.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)Google Scholar
  14. 14.
    Teixeira, S., Ferreira, N.S., Conlan, R.S., Guy, O.J., Sales, M.G.F.: Chitosan/AuNPs modified graphene electrochemical sensor for label-free human chorionic gonadotropin detection. Electroanalysis. 26, 2591–2598 (2014)Google Scholar
  15. 15.
    Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Recent advances in graphene-based biosensors. Biosensens. Bioelectron. 12, 4637–4648 (2011)Google Scholar
  16. 16.
    Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2009)Google Scholar
  17. 17.
    Qi, W., Li, M., Szunerits, S., Boukherroub, R.: Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric H2O2 detection. Electroanalysis. 26, 156–163 (2014)Google Scholar
  18. 18.
    Yiming, Z., Xun, Y., Yuan, W., Yi, Ch: One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J. Mater. Chem. 22, 7245 (2012)Google Scholar
  19. 19.
    Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y., Kaner, R.B.: A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano. 4, 3845 (2012)Google Scholar
  20. 20.
    Paredes, J.I., Villar-Rodil, S., Fern_andez-Merino, M.J., Guardia, L., Martínez-Alonso, A., Tascon, J.M.: Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 21, 298 (2011)Google Scholar
  21. 21.
    Chen, Y., Zhang, X., Yu, P., Ma, Y.: Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 30, 4527–4529 (2009)Google Scholar
  22. 22.
    Li, H., Pang, S., Feng, X., Mullen, K., Bubeck: Handbook of carbon nano materials C. Chem. Commun. 46, 6243 (2010)Google Scholar
  23. 23.
    Liang, Y., Wu, D., Feng, X., Mullen, K.: Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679 (2009)Google Scholar
  24. 24.
    Ai, K., Liu, Y., Lu, L., Cheng, X., Huo, L.: Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. J. Mater. Chem. 21, 14917–14924 (2011)Google Scholar
  25. 25.
    Pham, V.H., Cuong, T.V., Hur, S.H., Oh, E., Kim, E.J., Shin, E.W., Chung, J.S.: Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem. 21, 3371–3377 (2011)Google Scholar
  26. 26.
    Lin, Z., Yao, Y., Li, Z., Liu, Y., Li, Z., Wong, C.-P.: J. Phys. Chem. C. 114, 14819 (2010)Google Scholar
  27. 27.
    Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., Zhang, X.: Environment-friendly method to produce graphene that employs vitamin C and amino acid. J. Chem. Mater. 22, 2213–2218 (2010)Google Scholar
  28. 28.
    Dua, V., Surwade, S.P., Ammu, S., Agnihotra, S.R., Jain, S.Roberts, K.E., Park, S., Ruoff, R.S., Manohar, S.K.: All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010)Google Scholar
  29. 29.
    Fang, M., Long, J., Zhao, W., Wang, L., Chen, G.: American chemical society ph-responsive chitosan-mediated graphene dispersions. Langmuir. 26(22), 16771–16774 (2010)Google Scholar
  30. 30.
    Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)Google Scholar
  31. 31.
    Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fern_andez, P., Martínez-Alonso, A., Tascon, J.M.D., Vitamin, C.: Is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 114, 6426–6432 (2010)Google Scholar
  32. 32.
    Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 4, 2429–2437 (2010)Google Scholar
  33. 33.
    Liu, J., Fu, S., Yuan, B., Li, Y., Deng, Z.: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010)Google Scholar
  34. 34.
    Wang, Y., Shi, Z.X., Yin, J.: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces. 3, 1127–1133 (2011)Google Scholar
  35. 35.
    Hummers, W.S. Jr., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)Google Scholar
  36. 36.
    George, J., Sabapathi, S.N.: Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015)Google Scholar
  37. 37.
    Nurain, J., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Corps Products 37, 93–99 (2012)Google Scholar
  38. 38.
    Ping, L., Hsieh, Y.L.: preparation and properties of cellulose nanocrystals/rods, spheres and network. Carbohydr. Polym. 82, 329–336 (2010)Google Scholar
  39. 39.
    Oh, S.Y., Yoo, D. I., Shin, Y., Seo, G.: FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd. Res. 340, 417–428 (2005)Google Scholar
  40. 40.
    Sebe, G., Ham-Pichavant, F., Ibarboure, E., Akissi, L., Chantal, K., Tingaut, Ph.: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol. 13, 570–578 (2012)Google Scholar
  41. 41.
    Borysiak, S., Doc zekalska, B.: Research into the mercerization process of beech wood using the waxs method fibres. Text East Eur. 16, 101–103 (2008)Google Scholar
  42. 42.
    Idström, A., Brelid, H., Nydén, M., Nordstierna, L.: CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system. Carbohyd. Polym. 92, 881–884 (2013)Google Scholar
  43. 43.
    Ishikawa, A., Okano, T., Sugiyama, J.: Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. J. Polym. 38, 463–468 (1997)Google Scholar
  44. 44.
    Brinchia, L., Kenny, J.M., Cotana, F., Fortunati, E.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd. Polym. 94, 154–169 (2013)Google Scholar
  45. 45.
    Haiping, Y., Rong, Y., Hanping, Ch., Dong H. L, Chuguang. Z., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788 (2007)Google Scholar
  46. 46.
    Zhang, X., Yang, W., Blasiak, W.: Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis. Fuel, 109, 476–483 (2013)Google Scholar
  47. 47.
    Chang, C.-P., Wang, I.-C., Hung, K.-J., Perng, Y.-S.: Preparation and characterization of nanocrystalline cellulose by acid hydrolysis of cotton linter. Taiwan J. For. Sci. 25(3), 231–244 (2010)Google Scholar
  48. 48.
    Jeong, H.D., Yoon, C.R., Lee, J.H., Band, D.S.: Preparation and characterization of cellulose nano-whiskers extracted from microcrystalline cellulose by acid hydrolysis. Elastom. Compos. 45, 51–57 (2010)Google Scholar
  49. 49.
    Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666 (2012)Google Scholar
  50. 50.
    Light cap, I., Kamat, P.V.: Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 46, 2235 (2013)Google Scholar
  51. 51.
    Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano. Res. 1, 203 (2008)Google Scholar
  52. 52.
    Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B.H., Min, D.-H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211 (2013)Google Scholar
  53. 53.
    Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y.: Graphene and graphene oxide: bio functionalization and applications in biotechnology. Trends Biotechnol. 29, 205 (2011)Google Scholar
  54. 54.
    Pyun, J.: Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46 (2011)Google Scholar
  55. 55.
    Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Func. Mater. 20, 2255 (2010)Google Scholar
  56. 56.
    Dreyer, D.R., Jia, H.-P., Bielawski, C.W.: Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813 (2010)Google Scholar
  57. 57.
    Kim, J., Cote, L.J., Franklin Kim, F., Yuan, W., Shull, K.R., Huang, J.: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180 (2010)Google Scholar
  58. 58.
    Dohyung, K., Seung Jae, Y., Yern Seung, K., Haesol, J., Chong Rae P.: Simple and cost-effective reduction of graphite oxide by sulfuric acid. Carbon 50, 3229–3232 (2012)Google Scholar
  59. 59.
    Mousumi, M., Krishanu, Ch., Kajari, K., Saibal, G., Dipali, B.: Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. Diamond Relat. Mater. 37, 74–79 (2013)Google Scholar
  60. 60.
    Sheng, Y., Wenbo, Y., Dazhen, H., Caifeng, Ch, Hao, L., Xiaojing, Y.: A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2, 8827–8832 (2012)Google Scholar
  61. 61.
    Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 4(4), 2429–2437 (2010)Google Scholar
  62. 62.
    Zhang, S., Shao, Y., Liao, H., Engelhard, M.H., Yin, G., Lin, Y.: Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano. 5, 1785–1791 (2011)Google Scholar
  63. 63.
    Hassan, H.M.A., Abdelsayed, V., Khder, A., AbouZeid, K.M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A.: Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837 (2009)Google Scholar
  64. 64.
    Mc Allister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso M. et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)Google Scholar
  65. 65.
    Yang, S., Yue, W., Huang, D., Chen, C., Lin, H., Yang, X.: A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2, 8827–8832 (2012)Google Scholar
  66. 66.
    Mousumi, M., Krishanu, Ch, Kajari, K., Saibal, G., Banerjee, D.: Reduction of graphene oxide through a green and metal-free approach using formic acid. Diamond Relat Mater. 37, 74–79 (2013)Google Scholar
  67. 67.
    Petit, C., Seredych, M., Bandosz, T.J.: Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Faouzia Khili
    • 1
    • 4
  • Joao Borges
    • 2
  • Pedro L. Almeida
    • 2
    • 3
  • Rabah Boukherroub
    • 4
  • Amel Dakhlaoui Omrani
    • 5
    • 6
    Email author
  1. 1.Unity of Research ‘Physics of Lamellar Materials and Hybrid Nanomaterials (PMLNH)’, Faculty of Sciences BizerteUniversity CarthageCarthageTunisia
  2. 2.Nova,I3N - CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaFCT/UNLCaparicaPortugal
  3. 3.Área Departamental de FísicaInstituto Superior de Engenharia de LisboaLisboaPortugal
  4. 4.University of Lille, CNRS, Central Lille, ISEN, University of ValenciennesUMR 8520, IEMNLilleFrance
  5. 5.Department of Chemistry, Faculty of Sciences and Arts-KhulaisUniversity of JeddahJeddahKingdom of Saudi Arabia
  6. 6.Laboratory of Physical Chemistry of Mineral Materials and Their Applications, National Center of Research in Material SciencesCNRSMSolimanTunisia

Personalised recommendations