The Antioxidant and Enzyme Inhibitory Activity of Balsam Fir (Abies balsamea (L.) Mill.) Bark Solvent Extracts and Pyrolysis Oil


Wood waste from forestry practices offers an inexpensive source of biomass that can be converted into bioenergy, fuels and value-added chemicals. Balsam fir (Abies balsamea (L.) Mill.) bark offers a source of bioactive natural products, such as lignans, separated through solvent extraction (SE). The objectives of the research were: (1) to compare traditional solvent with supercritical fluid extraction (SFE) and slow pyrolysis processes to separate and convert chemicals from the bark and (2) to assess the biological activity of the extracts and pyrolysis oils. In vitro biochemical assays were used to measure antioxidant and oxygen radical-scavenging abilities, and glutathione S-transferase and esterase enzyme inhibition. The pyrolysis oil had similar anti-oxidant, radical-scavenging ability and enzyme inhibitory activity to the SE and SFE extracts. Fractionation and mass spectrometry identified catechol and p-coumaryl alcohol in the organic phase of pyrolysis oil. The small phenolic compounds identified offer starting materials for pharmaceutical or insecticide synergist application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Solvent extraction


Supercritical fluid extraction


Raw pyrolysis oil


Glutathione S-transferase


Monoamine oxidase


Glutamic acid decarboxylase


Mechanically fluidized reactor


Colorado potato beetle


S, S, S-tributyl phosphorotrithioate




Diethyl maleate


1, 1-diphenyl-2-picrylhydrazyl radical


α-naphthyl acetate


1-chloro-2, 4-dinitrobenzene


  1. 1.

    Fraser, M.H., Cuerrier, A., Haddad, P.S., Arnason, J.T., Owen, P.L., Johns, T.: Medicinal plants of Cree communities (Québec, Canada): anztioxidant activity of plants used to treat type 2 diabetes symptoms. Can. J. Physiol. Pharmacol. 85(11), 1200–1214 (2007)

    Article  Google Scholar 

  2. 2.

    Waye, A., Annal, M., Tang, A., Picard, G., Harnois, F., Guerrero-Analco, J.A., Saleem, A., Hewitt, L.M., Milestone, C.B., MacLatchy, D.L., Trudeau, V.L., Arnason, J.T.: Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain. Sci. Total Environ. 468, 315–325 (2014)

    Article  Google Scholar 

  3. 3.

    Wang, Z., Zhao, Z., Abou-Zaid, M.M., Arnason, J.T., Liu, R., Walshe-Roussel, B., Waye, A., Liu, S., Saleem, A., Cáceres, L.A., Wei, Q., Scott, I.M.: Inhibition of insect glutathione S-transferase (GST) by conifer extracts. Arch. Insect Biochem. Physiol 87(4), 234–249 (2014)

    Article  Google Scholar 

  4. 4.

    Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., Scott: I. M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic. Biochem. Physiol. 127, 1–7 (2016)

    Article  Google Scholar 

  5. 5.

    Hossain, M.M., Scott, I.M., McGarvey, B.D., Conn, K., Ferrante, L., Berruti, F., Briens, C.: Insecticidal and anti-microbial activity of bio-oil derived from fast pyrolysis of lignin, cellulose, and hemicellulose. J. Pest Sci. 88(1), 171–179 (2015)

    Article  Google Scholar 

  6. 6.

    Mullen, C.A., Boateng, A.A.: Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 22(3), 2104–2109 (2008)

    Article  Google Scholar 

  7. 7.

    Booker, C.J., Bedmutha, R., Vogel, T., Gloor, A., Xu, R., Ferrante, L., Yeung, K.K.C., Scott, I.M., Conn, K.L., Berruti, F., Briens, C.: Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis oil from tobacco leaves using a fluidized bed pilot plant. Ind. Eng. Chem. Res. 49(20), 10074–10079 (2010)

    Article  Google Scholar 

  8. 8.

    Liu, S., Caceres, L., Schieck, K., Booker, C.J., McGarvey, B.M., Yeung, K.K.C., Pariente, S., Briens, C., Berruti, F., Scott, I.M.: Insecticidal activity of bio-oil from the pyrolysis of straw from brassica spp. J. Agric. Food Chem. 62(16), 3610–3618 (2014)

    Article  Google Scholar 

  9. 9.

    Karaosmanoglu, H., Soyer, F., Ozen, B., Tokatli, F.: Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 58(14), 8238–8245 (2010)

    Article  Google Scholar 

  10. 10.

    Burri, J., Graf, M., Lambelet, P., Loliger, J.: Vanillin: more than a flavouring agent—a potent antioxidant. J. Sci. Food Agric. 48(1), 49–56 (2010)

    Article  Google Scholar 

  11. 11.

    Cooper, R.A.: Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int. Wound J. 10(6), 630–637 (2013)

    Article  Google Scholar 

  12. 12.

    Ogata, M., Hoshi, M., Shimotohno, K., Urano, S., Endo, T.: Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J. Am. Oil Chem. Soc. 74(5), 557–562 (1997)

    Article  Google Scholar 

  13. 13.

    Zhang, W.B., Mai, K.S., Xu, W., Liufu, Z.G., Tan, B.P.: Dietary guaiacol improves the growth of juvenile abalone, Haliotis discus hannai Ino. Chin. J. Oceanol. Limnol. 27(4), 697–702 (2009)

    Article  Google Scholar 

  14. 14.

    Venderbosch, R.H., Prins, W.: Fast pyrolysis technology development. Biofuel Bioprod. Biorefin. 4(2), 178–208 (2010)

    Article  Google Scholar 

  15. 15.

    Papari, S., Hawboldt, K.: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew. Sustain. Energy Rev. 52, 1580–1595 (2015)

    Article  Google Scholar 

  16. 16.

    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves. J. Anal. Appl. Pyrolysis 112, 80–87 (2015)

    Article  Google Scholar 

  17. 17.

    Bajerová, P., Adam, M., Bajer, T., Ventura, K.: Comparison of various techniques for the extraction and determination of antioxidants in plants. J. Sep. Sci. 37(7), 835–844 (2014)

    Article  Google Scholar 

  18. 18.

    Dewanto, V., Wu, X.Z., Adom, K.K., Liu, R.H.: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002)

    Article  Google Scholar 

  19. 19.

    Bhat, F.M., Riar, C.S.: Extraction, identification and assessment of antioxidative compounds of bran extracts of traditional rice cultivars: an analytical approach. Food Chem. 237, 264 (2017)

    Article  Google Scholar 

  20. 20.

    Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T.: Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36(6), 2090–2097 (1988)

    Article  Google Scholar 

  21. 21.

    Kim, D.O., Jeong, S.W., Lee, C.Y.: Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81(3), 321–326 (2003)

    Article  Google Scholar 

  22. 22.

    Sun, B., Ricardo-da-Silva, J.M., Spranger, I.: Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46(10), 4267–4274 (1998)

    Article  Google Scholar 

  23. 23.

    Suzuki, T., Doi, S., Yamakawa, M., Yamamoto, K., Watanabe, T., Funaki, M.: Recovery of wood preservatives from wood pyrolysis tar by solvent extraction. Holzforschung 51(3), 214–218 (1997)

    Article  Google Scholar 

  24. 24.

    Oehr, K.H., Mckinely, J. Glyoxal production from biomass pyrolysis derived hydroxy-acetaldehyde. In: Bridgwater, A.V. (ed) Advances in thermochemical biomass conversion, p. 1452. Blackie Academic & Professional, London (1994)

    Google Scholar 

  25. 25.

    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of novel pyrolysis reactor technology to concentrate bio-oil components with antioxidant activity from tobacco, tomato and coffee ground biomass. Waste Biomass Valoriz. 9(9), 1607–1617 (2018)

    Article  Google Scholar 

  26. 26.

    Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils. J. Environ. Sci. Health 51(12), 860–867 (2016)

    Article  Google Scholar 

  27. 27.

    Kim, J.W., Lee, H.W., Lee, I.G., Jeon, J.K., Ryu, C., Park, S.H., Jung, S.C., Park, Y.K.: Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood. Renew. Energy 65(66), 41–48 (2014)

    Google Scholar 

  28. 28.

    Li, D., Berruti, F., Briens, C.: Autothermal fast pyrolysis of birch bark with partial oxidation in a fluidized bed reactor. Fuel 121(4), 27–38 (2014)

    Article  Google Scholar 

  29. 29.

    Fagernas, L., Kuoppala, E., Tiilikkala, K., Oasmaa, A.: Chemical composition of birch wood slow pyrolysis products. Energy Fuels 26(2), 1275–1283 (2012)

    Article  Google Scholar 

  30. 30.

    Patra, J.K., Kim, S.H., Hwang, H., Choi, J.W., Baek, K.-H.: Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (pinus densiflora siebold and zucc.). Molecules 20(3), 3986–4006 (2015)

    Article  Google Scholar 

  31. 31.

    Rasouli, H., Hosseini-Ghazvini, S.M., Adibi, H., Khodarahmi, R.: Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 8(5), 1942–1954 (2017)

    Article  Google Scholar 

  32. 32.

    Adandonon, A., Regnier, T., Aveling, T.A.: Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii. Eur. J. Plant Pathol 149(2), 245–251 (2017)

    Article  Google Scholar 

  33. 33.

    Liu, S.Q., Scott, I.M., Pelletier, Y., Kramp, K., Durst, T., Sims, S.R., Arnason, J.T.: Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. J. Econ. Entomol 107(2), 797–805 (2014)

    Article  Google Scholar 

  34. 34.

    Wang, J.J., Wei, D., Dou, W., Hu, F., Liu, W.F., Wang, J.J.: Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol 106(2), 970–978 (2013)

    Article  Google Scholar 

  35. 35.

    Patathananone, S., Thammasirirak, S., Daduang, J., Gung, C.J., Temsiripong, Y., Daduang, S.: Inhibition of hela cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. Environ. Toxicol. 31(11), 1329–1336 (2016)

    Article  Google Scholar 

  36. 36.

    Zhang, M., Fang, T., Pu, G., Sun, X., Zhou, X., Cai, Q.: Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pestic. Biochem. Physiol. 107(1), 44–49 (2013)

    Article  Google Scholar 

  37. 37.

    Sukhirun, N., Pluempanupat, W., Bullangpoti, V., Koul, O.: Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-acetoxycinnamyl alcohol, and (E)-p-coumaryl alcohol ethyl ether against Bactrocera dorsalis (Diptera: Tephritidae) and the impact on detoxification enzyme activities. J. Econ. Entomol 104(5), 1534–1540 (2011)

    Article  Google Scholar 

  38. 38.

    Xu, L.Q., Pranantyo, D., Neoh, K.G., Kang, E.T., Teo, S.L.M., Fu, G.D.: Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym. Chem. 7(2), 493–501 (2016)

    Article  Google Scholar 

  39. 39.

    Ali, A., Bansal, D., Kaushik, N.K., Kaushik, N., Choi, E.H., Gupta, R.: Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. J. Chem. Sci. 126(4), 1091–1105 (2014)

    Article  Google Scholar 

Download references


We recognize the technical support from Dr. Paul A. Charpentier, Western University, supercritical fluid extraction,Tim McDowell, AAFC London, GC-MS analysis and Igor Lalin, AAFC London, CPB rearing. We also thank Dr. John T. Arnason, University of Ottawa, for providing the plant material. This research was partially supported by funding from the China Scholarship Council (CSC), the National Natural Science Foundation of China (No. 31470630), the Science and Technology Innovation from ShanXi Agriculture University (2016YJ14) and Agriculture and Agri-Food Canada.

Author information



Corresponding author

Correspondence to Ian M. Scott.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cáceres, L.A., Hossain, M.M. et al. The Antioxidant and Enzyme Inhibitory Activity of Balsam Fir (Abies balsamea (L.) Mill.) Bark Solvent Extracts and Pyrolysis Oil. Waste Biomass Valor 10, 3295–3306 (2019).

Download citation


  • Abies balsamea (L.) Mill.
  • Solvent extraction
  • Supercritical fluid extraction
  • Pyrolysis
  • Glutathione S-transferase inhibition
  • Esterase inhibition
  • Antioxidant activity