Abstract
The likely use of continuous cultures of Chlorella vulgaris for flue gas abatement was studied. Firstly, no pH-controlled photo-bioreactors were operated in order to understand the tolerance of this microalgae to high CO2 concentrations in the airstream. Thus, the effect in biomass productivity, CO2 fixation and biochemical composition of different percentage of pure CO2 (ranging 1–12%) in the air supply was investigated. When the inlet CO2 concentration varied from 1 to 10%, no statistical differences were found (ANOVA, p < 0.05) in the rate of carbon assimilation (0.6–0.8 g L−1 d). In all the cases, biomass presented a high content both proteins and lipids (40 and 25% respectively). However, when cultures were supplied with 12% of pure CO2 in the airstream, pH drastically dropped and cultures were not viable. Next, the potential use of CO2 contained in a simulated flue gas as a unique source of carbon was evaluated. Thus a mix of gases mimicking those presented in an exhausted stream of a power plant was used to aerate constantly the cultures. In this condition, cultures were only viable either when the simulated flue gas stream was diluted twelve times with air (resulting a constant supply of 1% CO2 in the airstream) or no diluted but being used by pulse to control the pH of the culture. In both cases, cultures achieved a steady state, rendering 0.7 and 0.9 g CO2 assimilated L−1 d−1 respectively. Biomass presented high content of proteins and lipids (40% respectively) in both conditions. These results suggest that the use of exhausted gases can make more economically feasible the production of microalgae and generate a valuable biomass rich in proteins and lipids.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D.: Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 4945–4953 (2011). doi:10.1016/j.biortech.2011.01.054
Wai Yan Cheah, Pau Loke Show, Jo-Shu Chang, Tau Chuan Ling, Juan, J.C: Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015). doi:10.1016/j.biortech.2014.11.026
Qafoku, N.P.: Climate-change effects on soils: accelerated weathering, soil carbon, and elemental cycling. In: Advances in Agronomy, vol. 131. pp. 111–172. (2015). doi:10.1016/bs.agron.2014.12.002
Kumar, K., Banerjee, D., Das, D.: Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour. Technol. 152, 225–233 (2014). doi:10.1016/j.biortech.2013.10.098
Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G.: Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139, 149–154 (2013). doi:10.1016/j.biortech.2013.04.032
Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007). doi:10.1016/j.biotechadv.2007.02.001
Acién, F.G., Gonzalez-Lopez, C.V., Fernandez-Sevilla, J.M., Molina-Grima, E.: Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl. Microbiol. Biotechnol. 96(3), 577–586 (2012). doi:10.1007/s00253-012-4362-z
Acién, F.G., Fernández, J.M., Magán, J.J., Molina, E.: Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30, 1344–1353 (2012). doi:10.1016/j.biotechadv.2012.02.005
Kandimalla, P., Desi, S., Vurimindi, H.: Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ. Sci. Pollut. Res. (2015). doi:10.1007/s11356-015-5264-2
Keffer, J.E., Kleinheinz, G.T.: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol. 29(5), 275–280 (2002). doi:10.1038/sj.jim.7000313
Chien-Ya, K., Tsai-Yu, C., Yu-Bin, C., Tzai-Wen, C., Hsiun-Yu, L., Chun-Da, C., Jo-Shu, C., Chih-Sheng, L.: Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 166, 485–493 (2014). doi:10.1016/j.biortech.2014.05.094
Arnon, D.I., McSwain, B.D., Tsujimoto, H.Y., Wada, K.: Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. BBA-Bioenerg. 357(2), 231–245 (1974). doi:10.1016/0005-2728(74)90063-2
Del Río, E., Armendáriz, A., García-Gómez, E., García-González, M., Guerrero, M.G.: Continuous culture methodology for the screening of microalgae for oil. J. Biotechnol. 195, 103–107 (2015). doi:10.1016/j.jbiotec.2014.12.024
Clares, M.E., Moreno, J., Guerrero, M.G., García-González, M.: Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. J. Biotechnol. 187, 51–55 (2014). doi:10.1016/j.jbiotec.2014.07.014
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)
Kochert, G.: Quantitation of the macromolecular components of microalgae. In: Hellebust, J.A., Craigie J.S., Handbook of Physcological Methods. (eds.), Cambridge University Press, Cambridge, 189–195 (1978)
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)
Lin, T.-P., Caspar, T., Somerville, C., Preiss, J.: Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol. 86(4), 1131–1135 (1988). doi:10.1104/pp.86.4.1131
Benemann, J.R.: Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers. Manage. 34, 9–11 (1993). doi:10.1016/0196-8904(93)90047-e
Kadam, K.L.: Plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Convers Manage. 38, 505–510 (1997)
Maeda, K.: CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage. 36, 717–720 (1995). doi:10.1016/0196-8904(95)00105-M
Kadam, K.L.: Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10), 905–922 (2002)
Chae, S.R., Kang, S.T., Watanabe, Y., Shin, H.S.: Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients. Water Res. 40(11), 2161–2167 (2006). doi:10.1016/j.watres.2005.10.043
Doucha, J., Straka, F., Livansky, K.: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin layer photobioreactor. J. Appl. Phycol. 17, 403–412 (2005). doi:10.1007/s10811-005-8701-7
Brown, L.M.: Uptaken of carbon dioxide from flue gas by microalgae. Energy Convers. Manag. 37(6–8), 1363–1367 (1996). doi:10.1016/0196-8904(95)00347-9
Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008). doi:10.1007/s00253-008-1518-y
de Morais, M.G., Costa, J.A.V.: Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers. Manag. 48(7), 2169–2173 (2007). doi:10.1016/j.enconman.2006.12.011
Douskova, I., Doucha, J., Livansky, K., Machat, J., Novak, P., Umysova, D., Zachleder, V., Vitova, M.: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 82(1), 179–185 (2009). doi:10.1007/s00253-008-1811-9
Solovchenko, A., Khozin-Goldberg, I.: High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Lett. 35, 1745–1752 (2013). doi: 10.1007/s10529-013-1274-7
Nielsen, E.S.: Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plant. 8(2), 317–335 (1995)
Mortensen, L.M., Gislerød, H.R.: The growth of Chlorella sorokiniana as influenced by CO2, light, and flue gases. J. Appl. Phycol. (2015). doi:10.1007/s10811-015-0649-7
Van Den Hende, S., Vervaeren, H., Boon, N.: Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 30(6), 1405–1424 (2012). doi:10.1016/j.biotechadv.2012.02.015
Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simões, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16(5), 3043–3053 (2012). doi:10.1016/j.rser.2012.02.055
Yakoob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M.S.: An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res.-Thessalon. 21(1), (2014). doi:10.1186/2241-5793-21-6
Norsker, N.H., Barbosa, M.J., Vermuë, M.H., Wijffels, R.H.: Microalgal production—a close look at the economics. Biotechnol. Adv. 29, 24–27 (2011). doi:10.1016/j.biortech.2014.11.026
Wijffels, R.H., Barbosa, M.J.: An outlook on microalgal biofuels. Science 329, 796–799 (2010). doi:10.1126/science.1189003
Acknowledgements
This work was financially supported by SOST-CO2 CENIT-project in collaboration with Inabensa S.A.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Cubero, R., Moreno-Fernández, J. & García-González, M. Potential of Chlorella vulgaris to Abate Flue Gas. Waste Biomass Valor 9, 2015–2019 (2018). https://doi.org/10.1007/s12649-017-9987-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-017-9987-9


