Skip to main content

Advertisement

Log in

Potential of Chlorella vulgaris to Abate Flue Gas

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The likely use of continuous cultures of Chlorella vulgaris for flue gas abatement was studied. Firstly, no pH-controlled photo-bioreactors were operated in order to understand the tolerance of this microalgae to high CO2 concentrations in the airstream. Thus, the effect in biomass productivity, CO2 fixation and biochemical composition of different percentage of pure CO2 (ranging 1–12%) in the air supply was investigated. When the inlet CO2 concentration varied from 1 to 10%, no statistical differences were found (ANOVA, p < 0.05) in the rate of carbon assimilation (0.6–0.8 g L−1 d). In all the cases, biomass presented a high content both proteins and lipids (40 and 25% respectively). However, when cultures were supplied with 12% of pure CO2 in the airstream, pH drastically dropped and cultures were not viable. Next, the potential use of CO2 contained in a simulated flue gas as a unique source of carbon was evaluated. Thus a mix of gases mimicking those presented in an exhausted stream of a power plant was used to aerate constantly the cultures. In this condition, cultures were only viable either when the simulated flue gas stream was diluted twelve times with air (resulting a constant supply of 1% CO2 in the airstream) or no diluted but being used by pulse to control the pH of the culture. In both cases, cultures achieved a steady state, rendering 0.7 and 0.9 g CO2 assimilated L−1 d−1 respectively. Biomass presented high content of proteins and lipids (40% respectively) in both conditions. These results suggest that the use of exhausted gases can make more economically feasible the production of microalgae and generate a valuable biomass rich in proteins and lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D.: Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 4945–4953 (2011). doi:10.1016/j.biortech.2011.01.054

    Article  Google Scholar 

  2. Wai Yan Cheah, Pau Loke Show, Jo-Shu Chang, Tau Chuan Ling, Juan, J.C: Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015). doi:10.1016/j.biortech.2014.11.026

    Article  Google Scholar 

  3. Qafoku, N.P.: Climate-change effects on soils: accelerated weathering, soil carbon, and elemental cycling. In: Advances in Agronomy, vol. 131. pp. 111–172. (2015). doi:10.1016/bs.agron.2014.12.002

    Google Scholar 

  4. Kumar, K., Banerjee, D., Das, D.: Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour. Technol. 152, 225–233 (2014). doi:10.1016/j.biortech.2013.10.098

    Article  Google Scholar 

  5. Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G.: Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139, 149–154 (2013). doi:10.1016/j.biortech.2013.04.032

    Article  Google Scholar 

  6. Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007). doi:10.1016/j.biotechadv.2007.02.001

    Article  Google Scholar 

  7. Acién, F.G., Gonzalez-Lopez, C.V., Fernandez-Sevilla, J.M., Molina-Grima, E.: Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl. Microbiol. Biotechnol. 96(3), 577–586 (2012). doi:10.1007/s00253-012-4362-z

    Article  Google Scholar 

  8. Acién, F.G., Fernández, J.M., Magán, J.J., Molina, E.: Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30, 1344–1353 (2012). doi:10.1016/j.biotechadv.2012.02.005

    Article  Google Scholar 

  9. Kandimalla, P., Desi, S., Vurimindi, H.: Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ. Sci. Pollut. Res. (2015). doi:10.1007/s11356-015-5264-2

    Article  Google Scholar 

  10. Keffer, J.E., Kleinheinz, G.T.: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol. 29(5), 275–280 (2002). doi:10.1038/sj.jim.7000313

    Article  Google Scholar 

  11. Chien-Ya, K., Tsai-Yu, C., Yu-Bin, C., Tzai-Wen, C., Hsiun-Yu, L., Chun-Da, C., Jo-Shu, C., Chih-Sheng, L.: Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 166, 485–493 (2014). doi:10.1016/j.biortech.2014.05.094

    Article  Google Scholar 

  12. Arnon, D.I., McSwain, B.D., Tsujimoto, H.Y., Wada, K.: Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. BBA-Bioenerg. 357(2), 231–245 (1974). doi:10.1016/0005-2728(74)90063-2

    Article  Google Scholar 

  13. Del Río, E., Armendáriz, A., García-Gómez, E., García-González, M., Guerrero, M.G.: Continuous culture methodology for the screening of microalgae for oil. J. Biotechnol. 195, 103–107 (2015). doi:10.1016/j.jbiotec.2014.12.024

    Article  Google Scholar 

  14. Clares, M.E., Moreno, J., Guerrero, M.G., García-González, M.: Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. J. Biotechnol. 187, 51–55 (2014). doi:10.1016/j.jbiotec.2014.07.014

    Article  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    Google Scholar 

  16. Kochert, G.: Quantitation of the macromolecular components of microalgae. In: Hellebust, J.A., Craigie J.S., Handbook of Physcological Methods. (eds.), Cambridge University Press, Cambridge, 189–195 (1978)

    Google Scholar 

  17. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  18. Lin, T.-P., Caspar, T., Somerville, C., Preiss, J.: Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol. 86(4), 1131–1135 (1988). doi:10.1104/pp.86.4.1131

    Article  Google Scholar 

  19. Benemann, J.R.: Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers. Manage. 34, 9–11 (1993). doi:10.1016/0196-8904(93)90047-e

    Article  Google Scholar 

  20. Kadam, K.L.: Plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Convers Manage. 38, 505–510 (1997)

    Article  Google Scholar 

  21. Maeda, K.: CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage. 36, 717–720 (1995). doi:10.1016/0196-8904(95)00105-M

    Article  Google Scholar 

  22. Kadam, K.L.: Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10), 905–922 (2002)

    Article  Google Scholar 

  23. Chae, S.R., Kang, S.T., Watanabe, Y., Shin, H.S.: Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients. Water Res. 40(11), 2161–2167 (2006). doi:10.1016/j.watres.2005.10.043

    Article  Google Scholar 

  24. Doucha, J., Straka, F., Livansky, K.: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin layer photobioreactor. J. Appl. Phycol. 17, 403–412 (2005). doi:10.1007/s10811-005-8701-7

    Article  Google Scholar 

  25. Brown, L.M.: Uptaken of carbon dioxide from flue gas by microalgae. Energy Convers. Manag. 37(6–8), 1363–1367 (1996). doi:10.1016/0196-8904(95)00347-9

    Article  Google Scholar 

  26. Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008). doi:10.1007/s00253-008-1518-y

    Article  Google Scholar 

  27. de Morais, M.G., Costa, J.A.V.: Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers. Manag. 48(7), 2169–2173 (2007). doi:10.1016/j.enconman.2006.12.011

    Article  Google Scholar 

  28. Douskova, I., Doucha, J., Livansky, K., Machat, J., Novak, P., Umysova, D., Zachleder, V., Vitova, M.: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 82(1), 179–185 (2009). doi:10.1007/s00253-008-1811-9

    Article  Google Scholar 

  29. Solovchenko, A., Khozin-Goldberg, I.: High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Lett. 35, 1745–1752 (2013). doi: 10.1007/s10529-013-1274-7

    Article  Google Scholar 

  30. Nielsen, E.S.: Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plant. 8(2), 317–335 (1995)

    Article  Google Scholar 

  31. Mortensen, L.M., Gislerød, H.R.: The growth of Chlorella sorokiniana as influenced by CO2, light, and flue gases. J. Appl. Phycol. (2015). doi:10.1007/s10811-015-0649-7

    Article  Google Scholar 

  32. Van Den Hende, S., Vervaeren, H., Boon, N.: Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 30(6), 1405–1424 (2012). doi:10.1016/j.biotechadv.2012.02.015

    Article  Google Scholar 

  33. Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simões, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16(5), 3043–3053 (2012). doi:10.1016/j.rser.2012.02.055

    Article  Google Scholar 

  34. Yakoob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M.S.: An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res.-Thessalon. 21(1), (2014). doi:10.1186/2241-5793-21-6

    Article  Google Scholar 

  35. Norsker, N.H., Barbosa, M.J., Vermuë, M.H., Wijffels, R.H.: Microalgal production—a close look at the economics. Biotechnol. Adv. 29, 24–27 (2011). doi:10.1016/j.biortech.2014.11.026

    Article  Google Scholar 

  36. Wijffels, R.H., Barbosa, M.J.: An outlook on microalgal biofuels. Science 329, 796–799 (2010). doi:10.1126/science.1189003

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by SOST-CO2 CENIT-project in collaboration with Inabensa S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael García-Cubero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Cubero, R., Moreno-Fernández, J. & García-González, M. Potential of Chlorella vulgaris to Abate Flue Gas. Waste Biomass Valor 9, 2015–2019 (2018). https://doi.org/10.1007/s12649-017-9987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9987-9

Keywords