Skip to main content
Log in

Production of Some Extracellular Metabolites by a Solvent-Tolerant Pseudomonas aeruginosa Strain

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The goal of this study was to isolate and characterize a new bacterium capable of tolerating high concentrations of toxic organic solvents. The production of several extracellular secondary metabolites by Pseudomonas aeruginosa IBBPo16 cells was investigated using a combination of cultural, biochemical and molecular methods. A gram-negative bacterium, P. aeruginosa strain IBBPo16 (GenBank KT315654) was isolated from Poeni oily sludge by enrichment cultures method. Based on 16S rRNA gene sequence, isolated bacterium exhibited 100% similarity with other P. aeruginosa strains from nucleotide database. P. aeruginosa IBBPo16 was able to tolerate 100% cyclohexane, n-hexane, n-decane, styrene, 40% ethylbenzene, and 5% toluene. Toluene and ethylbenzene were more toxic for this bacterium, as compared with cyclohexane, n-hexane, n-decane, and styrene. In the genomic DNA extracted from P. aeruginosa IBBPo16 cells alkane hydroxylase (alkB1), xylene monooxygenase (xylM), naphthalene dioxygenase (ndoM), hydrophobic/amphiphilic efflux 1 (HAE1), and rhamnosyltransferase 1 (rhlAB) genes were detected. P. aeruginosa IBBPo16 produced some extracellular secondary metabolites, such as rhamnolipid surfactant, pyocyanin, pyorubin and pyoverdin pigments, which are well recognized for their numerous potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Mawgoud, A.M., Aboulwafa, M.M., Hassouna, N.A.-H.: Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl. Biochem. Biotechnol. 157, 329–345 (2009)

    Article  Google Scholar 

  2. Ali, C.H., Qureshi, A.S., Mbadinga, S.M., Liu, J.-F., Yang, S.- Z., Mu, B.-Z.: Organic solvent tolerant lipase from Pseudomonas aeruginosa FW_SH-1: purification and characterization. JSM Enzym. Prot. Sci. 1, 1005 (2016)

    Google Scholar 

  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  4. Das, K., Mukherjee, A.K.: Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 98, 1339–1345 (2007)

    Article  Google Scholar 

  5. Das, N., Chandran, P.: Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. (2011). doi:10.4061/2011/941810

    Google Scholar 

  6. Déziel, E., Lépine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins, R.G., Rahme, L.G.: Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344 (2004)

    Article  Google Scholar 

  7. El-Fouly, M.Z., Sharaf, A.M., Shahin, A.A.M., El-Bialy, H.A., Omara, A.M.A.: Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 8, 36–48 (2015)

    Article  Google Scholar 

  8. Gao, Y., Dai, J., Peng, H., Liu, Y., Xu, T.: Isolation and characterization of a novel organic solventtolerant Anoxybacillus sp. PGDY12, a thermophilic Gram-positive bacterium. J. Appl. Microbiol. 110, 472–478 (2011)

    Article  Google Scholar 

  9. Gaur, R., Khare, S.K.: Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents. Lett. Appl. Microbiol. 49, 372–377 (2009)

    Article  Google Scholar 

  10. Gesheva, V., Stackebrandt, E., Vasileva-Tonkova, E.: Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr. Microbiol. 61, 112–117 (2010)

    Article  Google Scholar 

  11. Heipieper, H.J., Diefenbac, R., Keweloh, H.: Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847–1852 (1992)

    Google Scholar 

  12. Inoue, A., Horikoshi, K.: Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J. Ferment. Bioeng. 71, 194–196 (1991)

    Article  Google Scholar 

  13. Jain, P.K., Gupta, V.K., Gaur, R.K., Lowry, M., Jaroli, D.P., Chauhan, U.K.: Bioremediation of petroleum oil contaminated soil and water. Res. J. Environ. Toxicol. 5, 1–26 (2011)

    Article  Google Scholar 

  14. Jensen, V., Löns, D., Zaoui, C., Bredenbruch, F., Meissner, A., Dieterich, G., Münch, R., Häussler, S.: RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J. Bacteriol. 188, 8601–8606 (2006)

    Article  Google Scholar 

  15. Jimenez, P.N., Koch, G., Thompson, J.A., Xavier, K.B., Cool, R.H., Quax, W.J.: The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012)

    Article  Google Scholar 

  16. Kalaiarasan, E., Narasimha, H.B.: Antimicrobial resistance patterns and prevalence of virulence factors among biofilm producing strains of Pseudomonas aeruginosa. Eur. J. Biotechnol. Biosci. 4, 26–28 (2016)

    Google Scholar 

  17. King, E.O., Ward, M.K., Raney, D.E.: Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307 (1954)

    Google Scholar 

  18. Kohno, T., Sugimoto, Y., Sei, K., Mori, K.: Design of PCR primers and gene probes for general detection of alkane-degrading bacteria. Microbes Environ. 17, 114–121 (2002)

    Article  Google Scholar 

  19. Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Wade, W.G.: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64, 795–799 (1998)

    Google Scholar 

  20. Márquez-Rocha, F.J., Olmos-Soto, J., Rosano-Hernández, M.C., Muriel-Garcia, M.: Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int. Biodeterior. Biodegrad. 55, 17–23 (2005)

    Article  Google Scholar 

  21. Medina, G., Juárez, K., Valderrama, B., Soberón-Chávez, G.: Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J. Bacteriol. 185, 5976–5983 (2003)

    Article  Google Scholar 

  22. Meguro, N., Kodama, Y., Gallegos, M.T., Watanabe, K.: Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil. Appl. Environ. Microbiol. 71, 580–586 (2005)

    Article  Google Scholar 

  23. Mesarch, M.B., Nakatsu, C.H., Nies, L.: Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. Environ. Microbiol. 66, 678–683 (2000)

    Article  Google Scholar 

  24. Mulet, M., David, Z., Nogales, B., Bosch, R., Lalucat, J., García-Valdés, E.: Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl. Environ. Microbiol. 77, 1076–1085 (2011)

    Article  Google Scholar 

  25. Norman, R. S., Moeller, P., McDonald, T. J., Morris, P. J.: Effect of pyocyanin on a crude-oil-degrading microbial community. Appl. Environ. Microbiol. 70, 4004–4011 (2004)

    Article  Google Scholar 

  26. Rikalović, M.G., Vrvić, M.M., Karadžić, I.M.: Rhamnolipid biosurfactant from Pseudomonas aeruginosa—from discovery to application in contemporary technology. J. Serb. Chem. Soc. 80, 279–304 (2015)

    Article  Google Scholar 

  27. Rocha, C.A., Pedregosa, A.M., Laborda, F.: Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925. AMB Express 1 (2011). doi:10.1186/2191-0855-1-9

    Google Scholar 

  28. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989)

    Google Scholar 

  29. Segura, A., Molina, L., Fillet, S., Krell, T., Bernal, P., Muñoz-Rojas, J., Ramos, J.L.: Solvent tolerance in Gram-negative bacteria. Curr. Opin. Biotechnol. 23, 415–421 (2012)

    Article  Google Scholar 

  30. Siegmund, I., Wagner, F.: New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Techn. 5, 265–268 (1991)

    Article  Google Scholar 

  31. Stancu, M.M.: Response mechanisms in Serratia marcescens IBBPo15 during organic solvents exposure. Curr. Microbiol. 73, 755–765 (2016)

    Article  Google Scholar 

  32. Stancu, M.M., Grifoll, M.: Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 57, 1–18 (2011)

    Article  Google Scholar 

  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)

    Article  Google Scholar 

  34. Tang, X.Y., Pan, Y., Li, S., He, B.F.: Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresour. Technol. 99, 7388–7392 (2008)

    Article  Google Scholar 

  35. Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., Xu, P.: Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour. Technol. 102, 4111–4116 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by Project No. RO1567-IBB05/2017 from the Institute of Biology Bucharest of Romanian Academy. The author is grateful to Ana Dinu for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Marilena Stancu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stancu, M.M. Production of Some Extracellular Metabolites by a Solvent-Tolerant Pseudomonas aeruginosa Strain. Waste Biomass Valor 9, 1747–1755 (2018). https://doi.org/10.1007/s12649-017-9967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9967-0

Keywords

Navigation