Skip to main content

Advertisement

Log in

Dark Fermentative Hydrogen Gas Production from Lime Treated Waste Paper Towel Hydrolysate

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study presents dark fermentative hydrogen gas production from acid hydrolysed waste paper towel hydrolysate. Firstly, Box-Behnken statistical experiment design was used to investigate glucose production from waste paper towel by acid hydrolysis. S/L ratio, hydrolysis time and pH were chosen as independent variables while glucose concentration in the hydrolysate was the objective function. Highest glucose concentration of 32.17 g/L was obtained at S/L ratio of 100 g/L, pH 0 (gauge pH) and 180 min hydrolysis time. All variables were found to have significant effect on glucose formation. Glucose concentration increased by increasing the S/L ratio and hydrolysis time, but decreased by increasing the pH. Secondly, the hydrolysate obtained at most convenient hydrolysis conditions was subjected to lime putty treatment for the removal of 5-HMF and SO4 2−. Thirdly, H2 gas was produced from the detoxified hydrolysate by dark fermentation. Maximum H2 formation yield, rate and H2 percentage in the gas phase were 1.02 mol H2/mol glucoseconsumed, 130.22 mL H2/g biomass.h and 43%, respectively. The remaining 5-HMF after lime treatment was effectively removed in dark fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Comissiion: Green Public Procurement Tissue Paper-Draft., Report for the European Comission, DG-Environment by BRE, Brussels (2011)

  2. Counsell, T.A.M., Allwood, J.M.: Desktop paper recycling: a survey of novel technologies that might recycle office paper within the office (2006).

  3. Wang, L., Sharifzadeh, M., Templer, R., Murphy, R.J.: Technology performance and economic feasibility of bioethanol production from various waste papers. Energy Environ. Sci. 5, 5717–5730 (2012)

    Article  Google Scholar 

  4. Ingwersen, W., Gausman, M., Weisbrod, A., Sengupta, D., Lee, S.-J., Bare, J., Zanoli, E., Bhander, G.S., Ceja, M.: Detailed life cycle assessment of Bounty® paper towel operations in the United States. J. Clean. Prod. 131, 509–522 (2016)

    Article  Google Scholar 

  5. Byadgi, S.A., Kalburgi, P.B.: ScienceDirect production of bioethanol from waste newspaper. Procedia Environ. Sci. 35, 555–562 (2016)

    Article  Google Scholar 

  6. Botta, L.S., Ratti, R.P., Sakamoto, I.K., Ramos, L.R., Silva, E.L., Varesche, M.B.A: Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess Biosyst. Eng. 39, 1887–1897 (2016)

    Article  Google Scholar 

  7. Thomas, G.: Overview of Storage Development DOE Hydrogen Program., US DOE Hydrogen Program 2000 Annual review May 9–11, 2000. Sandia National Laboratories, San Raman, Livermore, California (2000)

  8. Gavrilescu, D.: Energy from biomass in pulp and paper. Environ. Eng. Manag. J. 7, 537–546 (2008)

    Google Scholar 

  9. Kumar, G., Sivagurunathan, P., Kim, S.-H., Bakonyi, P., Lin, C.-Y., Kumar, G., Kim, S.-H., Sivagurunathan, P., Lin, C.-Y., Bakonyi, P..: Modeling and optimization of biohydrogen production from de-oiled jatropha using the response surface method. Arab. J. Sci. Eng. 40, 15–22 (2015)

    Article  Google Scholar 

  10. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)

    Article  Google Scholar 

  11. Jung, J.Y., Choi, M.S., Yang, J.K.: Optimization of concentrated acid hydrolysis of waste paper using response surface methodology. J. Korean Wood Sci. Technol. 41, 87–99 (2013)

    Article  Google Scholar 

  12. Fagan, R.D., Grethlein, H.E., Converse, A.O., Porteous, A.: Kinetics of the acid hydrolysis of cellulose found in paper refuse. Environ. Sci. Technol. 5, 545–547 (1971)

    Article  Google Scholar 

  13. Kumar, G., Sen, B., Lin, C.Y.: Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste. Bioresour. Technol. 145, 275–279 (2013)

    Article  Google Scholar 

  14. Kumar, G., Sivagurunathan, P., Chen, C.-C., Lin, C.-Y.: Batch and continuous biogenic hydrogen fermentation of acid pretreated de-oiled jatropha waste (DJW) hydrolysate. RSC Adv. 6, 45482–45491 (2016)

    Article  Google Scholar 

  15. Guo, F., Fang, Z., Xu, C.C., Smith, R.L.: Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energy Combust. Sci. 38, 672–690 (2012)

    Article  Google Scholar 

  16. Ferrer, A., Requejo, A., Rodríguez, A., Jiménez, L.: Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Bioresour. Technol. 129, 506–511 (2013)

    Article  Google Scholar 

  17. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  Google Scholar 

  18. Conde-Mejía, C., Jiménez-Gutiérrez, A., El-Halwagi, M.: A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf. Environ. Prot. 90, 189–202 (2012)

    Article  Google Scholar 

  19. Orozco, A.M., Al-Muhtaseb, A.H., Rooney, D., Walker, G.M., Aiouache, F., Ahmad, M.: Fermentable sugars recovery from lignocellulosic waste-newspaper by catalytic hydrolysis. Environ. Technol. 34, 3005–3016 (2013)

    Article  Google Scholar 

  20. Torget, R.W., Kim, J.S., Lee, Y.Y.: Fundamental Aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind. Eng. Chem. Res. 39, 2817–2825 (2000)

    Article  Google Scholar 

  21. Almeida, J.R.M., Bertilsson, M., Gorwa-Grauslund, M.F., Gorsich, S., Lidén, G.: Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82, 625–638 (2009)

    Article  Google Scholar 

  22. Wierckx, N., Koopman, F., Ruijssenaars, H.J., De Winde, J.H.: Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl. Microbiol. Biotechnol. 92, 1095–1105 (2011)

    Article  Google Scholar 

  23. Jeong, T.S., Choi, C.H., Lee, J.Y., Oh, K.K.: Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour. Technol. 116, 435–440 (2012)

    Article  Google Scholar 

  24. Panagiotopoulos, A.I., Bakker, R.R., de Vrije, T., Koukios, E.G.: Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour. Technol. 102, 11204–11211 (2011)

    Article  Google Scholar 

  25. Vanhatalo, K.M., Dahl, O.P.: Effect of mild acid hydrolysis parameters on properties of microcrystalline cellulose. BioResources. 9, 4729–4740 (2014)

    Google Scholar 

  26. Hayes, D.J., Ross, P.J., Hayes, P.M.H.B., Fitzpatrick, P.S.: The biofine process: production of levulinic acid, furfural and formic acid from lignocellulosic feedstocks. (1999)

  27. Trajano, H.L., Wyman, C.E.: Fundamentals of biomass pretreatment at low pH. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. Fuels Chem. 103–128 (2013)

  28. Huang, Y.-B., Fu, Y: Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15, 1095–1111 (2013)

    Article  Google Scholar 

  29. Salam, M.A., Pondith, P.C., Islam, A., Khan, M.R., Uddin, M.R., Islam, M.A.: Conversion of Cellulosic waste into fermentable sugar: process optimization. J Chem Eng, 28, 27–31 (2013)

    Google Scholar 

  30. Rath, K.M., Maheshwari, A., Bengtson, P., Rousk, J.: Comparative toxicity of salts to microbial processes in soil. Appl. Environ. Microbiol. 82, AEM.04052-15 (2016)

    Article  Google Scholar 

  31. Jeihanipour, A., Karimi, K., Taherzadeh, M.J.: Acid Hydrolysis of Cellulose-based Waste Textiles. The 7th International Chemical Engineering Congress & Exhibition IChEC. pp. 21–24, Kish, Iran (2011)

    Google Scholar 

  32. Breuer, G., de Jaeger, L., Artus, V.P.G., Martens, D.E., Springer, J., Draaisma, R.B., Eggink, G., Wijffels, R.H., Lamers, P.P.: Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol. Biofuels. 7, 70 (2014)

    Article  Google Scholar 

  33. Argun, H., Onaran, G.: Hydrogen gas production from waste paper by sequential dark fermentation and electrohydrolysis. Int. J. Hydrogen Energy. 41, 8057–8066 (2016)

    Article  Google Scholar 

  34. Argun, H., Kargi, F., Kapdan, I.K.: Hydrogen production by combined dark and light fermentation of ground wheat solution. Int. J. Hydrogen Energy. 34, 4305–4311 (2009)

    Article  Google Scholar 

  35. Kumar, G., Zhen, G., Kobayashi, T., Sivagurunathan, P., Kim, S.H., Xu, K.Q.: Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: A feasibility report using mixed microalgae biomass as feedstock. Int. J. Hydrogen Energy. 41, 4382–4392 (2016)

    Article  Google Scholar 

  36. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  37. Zhang, J., Li, J., Tang, Y., Xue, G.: Rapid method for the determination of 5-hydroxymethylfurfural and levulinic acid using a double-wavelength UV spectroscopy. Scientific World J. 2013, 506329 (2013)

    Google Scholar 

  38. Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D., Energy, D. of: Determination of structural carbohydrates and lignin in biomass. Biomass Anal. Technol. Team Lab. Anal. Proced. 2011, 1–14 (2004)

  39. Argun, H., Onaran, G.: Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis. Renew. Energy. 96, 442–449 (2016)

    Article  Google Scholar 

  40. International Organization for Standardization: ISO3260:1982 Pulps—Determination of chlorine consumption (Degree of delignification).

  41. EW Rice, RB Baird, AD. Eaton, L.S.C.: Standard methods for the examination of water and wastewater. Am. Water Work. Assoc. Public Work. Assoc. Environ. Fed. 1469 (2012)

  42. Argun, H., Dao, S.: Hydrogen gas production from waste peach pulp by dark fermentation and electrohydrolysis. Int. J. Hydrog. Energy. 41, 11568–11576 (2016)

    Article  Google Scholar 

  43. Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  Google Scholar 

  44. Lee, K., Hsu, Y., Lo, Y., Lin, P., Lin, C., Chang, J.: Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrogen Energy. 33, 1565–1572 (2008)

    Article  Google Scholar 

  45. Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R.: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations. Int. J. Hydrog. Energy. 33, 6109–6115 (2008)

    Article  Google Scholar 

  46. Spets, J.P., Kuosa, M., Granström, T., Kiros, Y., Rantanen, J., Lampinen, M.J., Saari, K.: Production of glucose by starch and cellulose acid hydrolysis and its use as a fuel in low-temperature direct-mode fuel cells. Mater. Sci. Forum. 638–642, 1164–1169 (2010)

    Article  Google Scholar 

  47. Dubey, A.K., Gupta, P.K., Garg, N., Naithani, S.: Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipitis. Carbohydr. Polym. 88, 825–829 (2012)

    Article  Google Scholar 

  48. Yáñez, R., Alonso, J., Parajó, J.: Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochem. 39, 1543–1551 (2004)

    Article  Google Scholar 

  49. Kumar, G., Cheon, H.-C., Kim, S.-H.: Effects of 5-hydromethylfurfural, levulinic acid and formic acid, pretreatment byproducts of biomass, on fermentative H2 production from glucose and galactose. Int. J. Hydrog. Energy 39, 16885–16890 (2014)

    Article  Google Scholar 

  50. Akobi, C., Hafez, H., Nakhla, G.: The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge. Bioresour. Technol. 221, 598–606 (2016)

    Article  Google Scholar 

  51. Jayakody, L.N., Hayashi, N., Kitagaki, H.: Molecular mechanisms for detoxification of major aldehyde inhibitors for production of bioethanol by Saccharomyces cerevisiae from hot- compressed water-treated lignocellulose. In: Vilas, A.M. (ed.) Materials and processes for energy: communicating current research and technological developments Energy Book Series #1. pp. 302–311. Formatex Research Center, Badajoz-Spain (2013)

    Google Scholar 

  52. Feldman, D., Kowbel, D.J., Glass, N.L., Yarden, O., Hadar, Y.: Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol. Biofuels 8, 3–11 (2015)

    Article  Google Scholar 

  53. Ran, H., Zhang, J., Gao, Q., Lin, Z., Bao, J.: Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol. Biofuels 7, 51 (2014)

    Article  Google Scholar 

  54. Eker, S., Sarp, M.: Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int. J. Hydrog. Energy 1–7 (2016)

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) by a Grant number of 113Y187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidayet Argun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argun, H., Onaran, G. Dark Fermentative Hydrogen Gas Production from Lime Treated Waste Paper Towel Hydrolysate. Waste Biomass Valor 9, 801–810 (2018). https://doi.org/10.1007/s12649-017-9957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9957-2

Keywords

Navigation