Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides

Original Paper
  • 69 Downloads

Abstract

Wet air oxidation (WAO) of lignocellulosic biomasses is a promising route for the production of renewable and valuable compounds, involving air as primary oxidant and mild reaction temperatures. In this work, an industrial residue of bioethanol production, steam exploded lignin derived from wheat straw, undergoes a WAO process with the aim to achieve more insights on the process performances in terms of potential yields of aromatic compounds and carboxylic acids (CAs). The experiments were carried out in a pressurized 50 ml batch reactor loaded with water or other aqueous solutions as solvent, the standard conditions were 150 °C of temperature, 20 bar of initial air pressure and 2 h. Afterwards, several solvothermal pretreatments were applied in order to depolymerize and solubilize lignin under inert atmosphere; the residues-free solutions obtained in this way were used as substrate for the WAO reaction. The choice of the pretreatment temperature, solvent alkalinity and presence of perovskite catalysts were evaluated with regard to the mass yields of resulting aromatic compounds and CAs, their carbon content, and the products distribution. Best performance exhibits a lignin dissolution ratio of 53% with 1.3% of yield towards aromatic compounds, where vanillin is the principal product (59.1%), but also the 32% of yield in CAs with glycolic acid as major product (40.9%).

Graphical Abstract

Keywords

Straw lignin Vanillin Carboxylic acids Perovskite oxides Wet air oxidation 

Notes

Acknowledgements

The authors acknowledge Biochemtex S.p.A for providing the industrial feedstock used in this study.

Supplementary material

12649_2017_9947_MOESM1_ESM.pdf (646 kb)
Supplementary material 1 (PDF 645 KB)

References

  1. 1.
    Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)CrossRefGoogle Scholar
  2. 2.
    Corma Canos, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)CrossRefGoogle Scholar
  3. 3.
    Isikgor, F.H., Remzi Becer, C.: Lignocellulosic Biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)CrossRefGoogle Scholar
  4. 4.
    Heitner, C., Dimmel, D., Schmidt, J.: Lignin and Lignans: Advances in chemistry. CRC Press (2010)Google Scholar
  5. 5.
    Doherty, W.O.S., Mousavioun, P., Fellows, C.M.: Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33, 259–276 (2011)CrossRefGoogle Scholar
  6. 6.
    Cherubini, F.: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)CrossRefGoogle Scholar
  7. 7.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  8. 8.
    Sánchez, Ó.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008)CrossRefGoogle Scholar
  9. 9.
    Ma, R., Xu, Y., Zhang, X.: Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8, 24–51 (2015)CrossRefGoogle Scholar
  10. 10.
    Gosselink, R.J.A., De Jong, E., Guran, B., Abächerli, A.: Co-ordination network for lignin—Standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20, 121–129 (2004)CrossRefGoogle Scholar
  11. 11.
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)CrossRefGoogle Scholar
  12. 12.
    Lange, H., Decina, S., Crestini, C.: Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J. 49, 1151–1173 (2013)CrossRefGoogle Scholar
  13. 13.
    Laskar, D.D., Yang, B., Wang, H., Lee, J.: Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels Bioprod. Biorefining 7, 602–626 (2013)CrossRefGoogle Scholar
  14. 14.
    Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)CrossRefGoogle Scholar
  15. 15.
    Sales, F.G., Maranhão, L.C.A., Lima Filho, N.M., Abreu, C.A.M.: Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind. Eng. Chem. Res. 45, 6627–6631 (2006)CrossRefGoogle Scholar
  16. 16.
    Phyllis2 database for biomass and waste., Energy research center of the Netherlands.Google Scholar
  17. 17.
    Stewart, D.: Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crops Prod. 27, 202–207 (2008)CrossRefGoogle Scholar
  18. 18.
    Belitz, H.-D., Grosch, W., Schieberle, P.: Food Chemistry. Springer Berlin Heidelberg, Berlin (2004)CrossRefGoogle Scholar
  19. 19.
    Lochab, B., Shukla, S., Varma, I.K.: Naturally occurring phenolic sources: monomers and polymers. RSC Adv. 4, 21712 (2014)CrossRefGoogle Scholar
  20. 20.
    Niemelä, K., Alén, R., Sjöström, E.: The formation of carboxylic acids during kraft and kraft-anthraquinone pulping of birch wood. Holzforschung 39, 167–172 (1985)CrossRefGoogle Scholar
  21. 21.
    Ma, R., Guo, M., Zhang, X.: Selective conversion of biorefinery lignin into dicarboxylic acids. ChemSusChem. 7, 412–415 (2014)CrossRefGoogle Scholar
  22. 22.
    Sato, K., Aoki, M., Noyori, R.: REPORTS A “Green” route to adipic acid†¯: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281, 1646–1648 (1998)CrossRefGoogle Scholar
  23. 23.
    Yao, K., Tang, C.: Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46, 1689–1712 (2013)CrossRefGoogle Scholar
  24. 24.
    Bernardi, M., Deorsola, F.A., Fino, D., Russo, N.: Catalytic wet air oxidation of maleic acid over lanthanum-based perovskites synthesized by solution combustion synthesis. Waste Biomass Valorization 5, 857–863 (2014)CrossRefGoogle Scholar
  25. 25.
    Kim, K.H., Ihm, S.K.: Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 186, 16–34 (2011)CrossRefGoogle Scholar
  26. 26.
    Resini, C., Catania, F., Berardinelli, S., Paladino, O., Busca, G.: Catalytic wet oxidation of phenol over lanthanum strontium manganite. Appl. Catal. B 84, 678–683 (2008)CrossRefGoogle Scholar
  27. 27.
    Partenheimer, W.: The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv. Synth. Catal. 351, 456–466 (2009)CrossRefGoogle Scholar
  28. 28.
    Villar, J.C., Caperos, A., Garcia-Ochoa, F.: Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci. Technol. 35, 245–255 (2001)CrossRefGoogle Scholar
  29. 29.
    Das, L., Kolar, P., Sharma-Shivappa, R.: Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3, 155–166 (2012)CrossRefGoogle Scholar
  30. 30.
    Zhang, J., Deng, H., Lin, L.: Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3 (x = 0, 0.1, 0.2). Molecules 14, 2747–2757 (2009)CrossRefGoogle Scholar
  31. 31.
    Gao, P., Li, N., Wang, A., Wang, X., Zhang, T.: Perovskite LaMnO3 hollow nanospheres: the synthesis and the application in catalytic wet air oxidation of phenol. Mater. Lett. 92, 173–176 (2013)CrossRefGoogle Scholar
  32. 32.
    Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., Li, J., Liu, S.: Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process. Energy Fuels. 23, 19–24 (2009)CrossRefGoogle Scholar
  33. 33.
    Misono, M.: Catalysis of perovskite and related mixed oxides. In: Heterogeneous Catalysis of Mixed Oxides Perovskite and Heteropoly Catalysts. pp. 67–95. Elsevier, Amsterdam (2013)CrossRefGoogle Scholar
  34. 34.
    Zhu, H., Zhang, P., Dai, S.: Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 5, 6370–6385 (2015)CrossRefGoogle Scholar
  35. 35.
    Gao, P., Li, C., Wang, H., Wang, X., Wang, A.: Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese J. Catal. 34, 1811–1815 (2013)CrossRefGoogle Scholar
  36. 36.
    Bouxin, F., Baumberger, S., Pollet, B., Haudrechy, A., Renault, J.H., Dole, P.: Acidolysis of a lignin model: investigation of heterogeneous catalysis using Montmorillonite clay. Bioresour. Technol. 101, 736–744 (2010)CrossRefGoogle Scholar
  37. 37.
    Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N.: Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In: Biofuels, pp. 67–93. Springer Berlin Heidelberg, Berlin (2007)Google Scholar
  38. 38.
    Li, J., Gellerstedt, G., Toven, K.: Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour. Technol. 100, 2556–2561 (2009)CrossRefGoogle Scholar
  39. 39.
    Pu, Y., Hu, F., Huang, F., Ragauskas, A.J.: Lignin structural alterations in thermochemical pretreatments with limited delignification. Bioenergy Res. 8, 992–1003 (2015)CrossRefGoogle Scholar
  40. 40.
    Toledano, A., Serrano, L., Labidi, J.: Organosolv lignin depolymerization with different base catalysts. J. Chem. Technol. Biotechnol. 87, 1593–1599 (2012)CrossRefGoogle Scholar
  41. 41.
    Lavoie, J.M., Baré, W., Bilodeau, M.: Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol. 102, 4917–4920 (2011)CrossRefGoogle Scholar
  42. 42.
    Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T.: Base-catalyzed depolymerization of biorefinery lignins. ACS Sustain. Chem. Eng. 4, 1474–1486 (2016)CrossRefGoogle Scholar
  43. 43.
    Alunga, K.R., Ye, Y.-Y., Li, S.-R.L., Liu, Y.-Q.: Catalytic oxidation of lignin-acetoderivatuves: a potential new recovery route for value-added aromatic aldehydes from acetoderivatives. Catal. Sci. Technol. 5, 3746–3753 (2015)CrossRefGoogle Scholar
  44. 44.
    Zhu, J., Chen, J.: Perovskites: Structure, Properties and Uses. Nova Science Publishers, Inc., New York (2010)Google Scholar
  45. 45.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)CrossRefGoogle Scholar
  46. 46.
    Weil, J., Brewer, M., Hendrickson, R., Sarikaya, A., Ladisch, M.R.: Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 70–72, 99–111 (1998)CrossRefGoogle Scholar
  47. 47.
    Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74, 25–33 (2000)CrossRefGoogle Scholar
  48. 48.
    Deng, H., Lin, L., Liu, S.: Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels 24, 4797–4802 (2010)CrossRefGoogle Scholar
  49. 49.
    Dutta, S., Wu, K.C.-W., Saha, B.: Emerging strategies for breaking the 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)CrossRefGoogle Scholar
  50. 50.
    Chen, H.: Biotechnology of lignocellulose: Theory and practice. Springer Netherlands (2014)Google Scholar
  51. 51.
    Xiang, Q., Lee, Y.Y.: Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide. Appl. Biochem. Biotechnol. 84–86, 153–162 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Simone Ansaloni
    • 1
  • Nunzio Russo
    • 1
  • Raffaele Pirone
    • 1
  1. 1.Department of Applied Science and Technology (DISAT)Politecnico di TorinoTorinoItaly

Personalised recommendations