Skip to main content

Nutritive Characterization of Delimed Bovine Tannery Fleshings for Their Possible Use as a Proteinaceous Aqua Feed Ingredient

Abstract

Purpose

Increased demand for animal protein additives in aquaculture has initiated the search of an alternative cheap protein source for aquatic animals, which can compensate the amino acids level of fishmeal (FM) and act as a valuable feedstuff. Abundantly available pre-tanned proteinaceous solid wastes from leather industries [bovine tannery fleshings (BTFs)] are valuable sources of dietary proteins and could be exploited as a FM replacer.

Methods

Wet limed fleshings from bovine hides (pH 12) were delimed with 1.5% formic acid [1:10 (w/v)] solution containing 0.1% v/v hydrogen peroxide (H2O2). Delimed bovine tannery fleshings (DBTFs) were characterized and fermented using Lactobacillus plantarum. Five isonitrogenous diets were formulated for Labeo rohita; where in fermented tannery fleshings flour (FTF) replaced FM by 25, 50, 75 and 100%. Ideal diet was subjected to multimycotoxins analysis.

Results

Eleven saturated and one monounsaturated fatty acids were detected through gas chromatography and mass spectrometry (GC-MS) in DBTFs. High performance thin layer chromatography (HPTLC) results confirmed the presence of ten indispensable and six dispensable amino acids. Superior growth performance, nutritional indices and body carcass composition (P < 0.05) were observed in fish group fed with diet formulated by replacing FM with 75% FTF (diet FTF3), followed by 50 and 25% replacement. Multimycotoxins analysis in FTF3 revealed the absence of potent feed toxins in the diet.

Conclusions

Recycling of BTFs by recovery of its biomolecules will be a beneficial remedy for long-term environmental threat associated with its disposal, supporting aqua feed processing concerns to reduce production costs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amit, K.R., Thiyam, G., Bhaskar, N., Suresh, P.V., Sakhare, P.Z., Halami, P., Mahendrakar, N.S.: Utilization of tannery fleshings: optimization of condition for fermenting delimed tannery fleshings using Entercoccus faecium HAB01 by response surface methodology. Bioresour. Technol. 101, 1885–1891 (2010). doi:10.1016/j.biortech.2009.10.015

    Article  Google Scholar 

  2. Bhaskar, N., Sakhare, P.Z., Suresh, P.V., Lalitha Gowda, R., Mahendrakar, N.S.: Biostabilization and preparation of protein hydrolysates from delimed leather fleshings. J. Sci. Ind. Res. 66, 1054–1063 (2007)

    Google Scholar 

  3. Kumar, A.G., Nagesh, N., Prabhakar, T.G., Sekaran, G.: Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour. Technol. 99, 2364–2372 (2008). doi:10.1016/j.biortech.2007.05.001

    Article  Google Scholar 

  4. Niyas Ahamed, M. I., Mohammed Kashif, P.: Safety disposal of tannery effluent sludge. Int. J. Pharm. Sci. Res. 5, 733–736 (2014)

    Google Scholar 

  5. Li, P., Mai, K., Trushenski, J., Wu, G.: New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53 (2008). doi:10.1007/s00726-008-0171-1

    Article  Google Scholar 

  6. Gatesoupe, F.J..: Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J. Mol. Microbiol. Biotechnol. 14, 107–114 (2008). doi:10.1159/000106089

    Article  Google Scholar 

  7. Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., Muzquiz, J.L.: The role of probiotics in aquaculture. Vet. Microbiol. 114, 173–186 (2006). doi:10.1016/j.vetmic.2006.01.009

    Article  Google Scholar 

  8. Nayak, S.K.: Probiotics and immunity: a fish perspective. Fish Shellfish Immunol. 29, 2–14 (2010). doi:10.1016/j.fsi.2010.02.017

    Article  Google Scholar 

  9. Amit, K.R., Nived, C., Sakhare, P.Z., Suresh, P.V., Bhaskar, N., Mahendrakar, N.S.: Optimization of acid hydrolysis conditions of delimed tannery fleshings by response surface method. J. Sci. Ind. Res. 68, 967–974 (2009)

    Google Scholar 

  10. Sekaran, G., Sumathi, C.: Nutritional evaluation of animal fleshing as a fish meal replacer in Labeo rohita. J. Aquac. Feed. Sci. Nutr. 2, 6–10 (2011)

    Google Scholar 

  11. AOAC (Association of Official Analytical Chemists).: Official Methods of Analysis. 18th edn. In: Helirich, K.(ed.) AOAC Inc., Arlington (2005)

    Google Scholar 

  12. Hedge, J.E., Hofreiter, B.T.: Carbohydrate Chemistry 17. In: Whistler, R.L., Be Miller, J.N. (Eds), Academic Press, New York (1962)

    Google Scholar 

  13. APHA, AWWA, WEF.: 21st edn. Standard Methods for the Examination of Water and Wastewater, Washington, D.C. (2005)

  14. KoohiKamali, S., Tan, C.P., Ling, T.C.: Optimization of sunflower oil transesterification process using sodium methoxide. Sci. World J. ID 475027 (2012) doi:10.1100/2012/475027

  15. Hess, B., Sherma, J.: Quantification of arginine in dietary supplement tablets and capsules by silica gel High performance thin layer chromatography with visible mode densitometry. Acta Chromatogr. 14, 60–69 (2004)

    Google Scholar 

  16. Balakrishnan, B., Prasad, B., Rai, A.K., Velappan, S.P., Subbanna, M.N., Narayanan, B.: In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods. Biodegradation. 22, 287–295 (2011). doi:10.1007/s10532-010-9398-0

    Article  Google Scholar 

  17. Shamala, T.R., Sreekantiah, K.R.: Fermentation of starch hydrolysates by Lactobacillus plantarum. J. Ind. Microbiol. 3, 175–178 (1988). doi:10.1007/bf01569524

    Article  Google Scholar 

  18. FAO.: Feed ingredients and fertilizers for farmed aquatic animals; sources and composition In: Tacon, A.G.J., Metain, M., Hasan, M.R.: (eds.) Fisheries and Aquaculture Technical Paper, p. 540. Food and Agriculture organizations of the United Nations, Rome (2009)

  19. APHA, AWWA and WEF.: Standard Methods for the Examination of Water and Wastewater, 20th edn, Washington (1998)

  20. Tekinay, A.A., Davies, S.J.: Dietary carbohydrate level influencing feed intake, nutrient utilisation and plasma glucose concentration in the rainbow trout, Oncorhynchus mykiss. Tur. J. Vet. Anim. Sci. 25, 657–666 (2001)

    Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.S.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  22. Moore, S., Stein, W.H.: Photometric ninhydrin method for use in the chromatography of amino acid. J. Biol. Chem. 176, 367–388 (1948)

    Google Scholar 

  23. NRC (National Research Council): Nutrient requirements of fish. National Academy Press, Washington (1993)

    Google Scholar 

  24. Tort, M.J., Fletcher, C., Wooster, G.A., Bowser, P.R.: Stability of hydrogen peroxide in aquaria as a fish disease treatment. J. Appl. Aquacult. 14, 37–45 (2004). doi:10.1300/J028v14n03_03

    Article  Google Scholar 

  25. Amit, K.R., Bhaskar, N., Halami, P.M., Indirani, K., Suresh, P.V., Mahendrakar, N.S.: Characterization and application of a native lactic acid bacterium isolated from tannery fleshings for the fermentative bioconversion of tannery fleshing. Appl. Microbiol. Biotechnol. 83, 757–766 (2009) doi:10.1007/s00253-009-1970-3

    Article  Google Scholar 

  26. Jini, R., Bijinu, B., Baskaran, V., Bhaskar, N.: Utilization of solid wastes from tanneries as possible protein source for feed applications: acute and sub-acute toxicological studies to assess safety of products prepared from delimed tannery fleshings. Waste Biomass Valoriz. 7, 439–446 (2016) doi:10.1007/s12649-015-9463-3

    Article  Google Scholar 

  27. Lawrence, C.S., Cheng, Y.W., Morrissy, N.M., Williams, N.M.: A comparison of mixed-sex vs. monosex growout and different diets on the growth rate of fresh water crayfish (Cherax albidus). Aquaculture 185, 281–289 (2000). doi:10.1016/S0044-8486(99)00358-0

    Article  Google Scholar 

  28. Mommsen, T.P., French, C.J., Hochachka, P.W.: Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool. 58, 1785–1799 (1980). doi:10.1139/z80-246

    Article  Google Scholar 

  29. Ogata, H.Y.: Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. J. Fish Biol. 61, 1504–1512 (2002). doi:10.1111/j.1095-8649.2002.tb02493.x

    Article  Google Scholar 

  30. Førde-Skjærvik, O., Skjærvik, O., Mørkøre, T., Thomassen, M.S., Rørvik, K.A.: Dietary influence on quality of farmed Atlantic cod (Gadus morhua): effect on glycolysis and buffering capacity in white muscle. Aquaculture 252, 409–420 (2006). doi:10.1016/j.aquaculture.2005.06.037

    Article  Google Scholar 

  31. Fang, Y.Z., Yang, S., Wu., G.: Free radicals, antioxidants, and nutrition. Nutrition 8, 872–879 (2002). doi:10.1016/S0899-9007(02)00916-4

    Article  Google Scholar 

  32. Morse, D.E., Hooker, N., Duncan, H., Jensen, L.: C-Amino butyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204, 407 (1979)

    Article  Google Scholar 

  33. Powell, E.N., Kasschau, M., Chen, E., Koenig, M., Pecon, J.: Changes in free amino acid pool during environmental stress in the gill of the oyster Crassostrea Virginica. Comp. Biochem. Physiol. 71A, 591–598 (1982). doi:10.1016/0300-9629(82)90208-0

    Article  Google Scholar 

  34. Riley, W.W., Higgs, D.A., Dosanjh, B.S., Eales, J.G.: Influence of dietary arginine and glycine content on thyroid function and growth of juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 2, 235–242 (1996). doi:10.1111/j.1365-2095.1996.tb00065.x

    Article  Google Scholar 

  35. Shamushaki, V.A.J., Kasumyan, A.O., Abedian, A., Abtahi, B.: Behavioural responses of the Persian sturgeon (Acipenser persicus) juveniles to free amino acid solutions. Mar. Fresh. Behav. Physiol. 40, 219–224 (2007). doi:10.1080/10236240701602184

    Article  Google Scholar 

  36. Colak, S., Zengin, G., Ozgunay, H., Sari, O., Sarikahya, H., Yuceer, L.: Utilization of leather industry prefleshings in biodiesel production. J. Am. Leather. Chem. Assoc. 100, 137–141 (2005)

    Google Scholar 

  37. Getahun, E., Gabiyye, N.: Experimental investigation and characterization of biodiesel production from leather industry fleshing wastes. Int. J. Renew. Sustain. Energy 2, 120–129 (2013) doi:10.11648/j.ijrse.20130203.17

    Article  Google Scholar 

  38. Kolomaznik, K., Pecha, J., Barinova, M., Sanek, L., Furst, T., Janacova, D.: Potential of tannery fleshings in biodiesel production and mathematical modeling of the fleshing pre-treatment. Int. J. Math. Comput. Simul. 6, 456–464 (2012)

    Google Scholar 

  39. Kolomaznik, K., Barinova, M., Furst, T.: Possibility of using tannery waste for biodiesel production. J. Am. Leather. Chem. Assoc. 104, 177–182 (2009)

    Google Scholar 

  40. Sanek, L., Pecha, J., Kolomaznik, K., Barinova, M.: Biodiesel production from tannery fleshings: feedstock pretreatment and process modeling. Fuel 148, 16–24 (2015). doi:10.1016/j.fuel.2015.01.084

    Article  Google Scholar 

  41. Sundar, V.J., Gnanamani, A., Muralidharan, C., Chandrababu, N.K., Mandal, A.B.: Recovery and utilization of proteinous wastes of leather making: a review. Rev. Environ. Sci. Biotechnol. 10, 151–163 (2011). doi:10.1007/s11157-010-9223-6

    Article  Google Scholar 

  42. Van Immerseel, F., Boyen, F., Gantois, I., Timbermont, L., Bohez, L., Pasmans, F., Haesebrouck, F., Ducatelle, R.: Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult. Sci. 84, 1851–1856 (2005)

    Article  Google Scholar 

  43. De Los Santos, F.S., Donoghue, A.M., Venkitanarayanan, K., Reyes-Herrera, I., Metcalf, J.H., Dirain, M.L., Aguiar, V.F., Blore, P.J., Donoghue, D.J.: Therapeutic supplementation of capyrlic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Appl. Environ. Microbiol. 74, 4564–4566 (2008). doi:10.1128/AEM.02528-07

    Article  Google Scholar 

  44. Taoka, Y., Maeda, H., Jo, J.Y., Kim, S.M., Park, S., Yoshikawa, T.: Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fisher. Sci. 72, 755–766 (2006) doi:10.1111/j.1444-2906.2006.01215.x

    Article  Google Scholar 

  45. Council Directive 70/524/EEC: List of the authorized additives in feeding-stuffs published in application of Article 9t (b) of Council Directive 70/524/EEC concerning additives in feeding-stuffs Off. J. Eur. Union C50-C144 (2004)

  46. John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A.: Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27, 145–152 (2009). doi:10.1016/j.biotechadv.2008.10.004

    Article  Google Scholar 

  47. Ravindran, B., Dinesh, S.L., Kennedy, J., Sekaran, G.: Vermicomposting of solid waste generated from leather industries using Epigiec earthworm Eisenia foetida. Appl. Biochem. Biotechnol. 151, 480–488 (2008). doi:10.1007/s12010-008-8222-3

    Article  Google Scholar 

  48. Shanmugam, P., Horan, N.J.: Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 100, 4117–4120 (2009). doi:10.1016/j.biortech.2009.03.052

    Article  Google Scholar 

  49. Douglas, G.W.: Chemical engineering problems in the leather industry. J. Soc. Leather. Technol. Chem. 32, 398–405 (1948)

    Google Scholar 

  50. Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K.: Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31, 877–902 (2013)

    Article  Google Scholar 

  51. Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., Kamran, M., Ehsan, N., Mehmood, S.: Recent trends in lactic acid biotechnology: a brief review on production to purification. J. Radiat. Res. Appl. Sci. 7, 222–229 (2014). doi:10.1016/j.jrras.2014.03.002

    Article  Google Scholar 

  52. Abubakar, M.Y., Momoh, A.T., Ipinjolu, J.K.: Effect of pelletizing machines on floatation and water stability of farm made fish feeds. Int. J. Fish. Aquat. Stud. 3, 98–103 (2016)

    Google Scholar 

  53. Martin-Cabrejas, M.A., Sanfiz, B., Vidal, A Molla E., Esteban, R.M., Lopez-Andreu, F.J.: Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J. Agric. Food. Chem. 52, 261–266 (2004) doi: 10.1021/jf034980t

  54. Soltan, M.A., Hanafy, M.A., Wafa, M.I.A.: An evaluation of fermented silage made from fish by-products as a feed ingredient for African Catfish (Clarias gariepinus). Global Vet. 2, 80–86 (2008)

    Google Scholar 

  55. Skrede, G., Sahlstrom, S., Skrede, A., Holck, A., Slinde, E.: Lactic acid fermentation of wheat and barley whole meal flour modifies carbohydrate composition and increases digestibility in mink (Mustela vision). Anim. Feed. Sci. Technol. 90, 199–212 (2001)

    Article  Google Scholar 

  56. Skrede, G., Storebakken, T., Skrede, A., Sahlstrom, S., Sorensen, M., Shearer, K.D., Slinde, E.: Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture. 210, 305–321 (2002)

    Article  Google Scholar 

  57. Fagbenro, O., Jauncey, K., Haylor, G.: Nutritive value of diets containing dried lactic acid fermented fish silage and soyabean meal for juvenile Oreochromis niloticus and Clarias gariepinus. Aquat. Living. Resour. 7, 79–85 (1994). doi:10.1051/alr:1994010

    Article  Google Scholar 

  58. Gatesoupe, F.J..: Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic vibrio. Aquat. Living. Resour. 7, 277–282 (1994)

    Article  Google Scholar 

  59. Krisna Dewi, A.P.W., Nursyam, H., Hariati, A.M.: Response of fermented Cladophora containing diet on growth performances and feed efficiency of tilapia (Oreochromis sp.). Int. J. Agr. Agron. Res. 5, 78–85 (2014)

    Google Scholar 

  60. Cavalheiro, J.M., de Souza, E.O., Bora, P.S.: Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresour. Technol. 98, 602–606 (2007). doi:10.1016/j.biortech.2006.02.018

    Article  Google Scholar 

  61. El-Sayed, A.F.: Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture. 127, 169–176 (1994). doi:10.1016/0044-8486(94)90423-5

    Article  Google Scholar 

  62. Brannon, E.L., Roley, D.D., Roley, S.: Alternate protein sources to supplement the University of Washington standard hatchery diet for chinook and salmon, Oncorhychus tshawytscha. Annual Report Coll. Fish University, Washington Seattle, pp. 64–65 (1996)

    Google Scholar 

  63. Bureau, D.P., Harris, A.M., Bevan, D.J., Simmons, L.A., Azevedo, P.A., Cho, C.Y.: Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 181, 281–291 (2000). doi:10.1016/S0044-8486(99)00232-X

    Article  Google Scholar 

  64. Fowler, L.G.: Feather meal as a dietary protein source during Parr-smolt transformation in fall chinook salmon. Aquaculture 89, 301–314 (1990). doi:10.1016/0044-8486(90)90134-9

    Article  Google Scholar 

  65. Nengas, I., Alexis, M.N., Davies, S.J.: High inclusion levels of poultry meals and related by-products in diets for gilthead seabream Sparus aurata L. Aquaculture 179, 13–23 (1999). doi:10.1016/S0044-8486(99)00148-9

    Article  Google Scholar 

  66. Rodriguez-Serna, M., Olvera-Novoa, M.A., Carmona-Osalde, C..: Nutritional value of animal by-product meal in practical diets for Nile tilapia, Oreochromis niloticus (L.) fry. Aquacult. Res. 27, 67–73 (1996). doi:10.1111/j.1365-2109.1996.tb00967.x

    Article  Google Scholar 

  67. Westgate, T.W.: Hatchery biology: Columbia river fishery development programme. Annual Progress Report, Oregon. Department of Fish and Wildlife, Portland (1979)

    Google Scholar 

Download references

Acknowledgements

Authors are very much indebted and grateful to Mr. T. Mohammed Khaleel of E.K.M Leather Processing Company, Erode, Tamil Nadu, India for the gratis supply of limed bovine fleshings. Authors also thank Indian Institute of Crop Processing Technology, Thanjavur and Dalmia Center for Research and Development, Coimbatore for providing GC-MS and HPTLC facilities, respectively. Authors acknowledge Animal Feed Analytical and Quality Assurance Laboratory, Veterinary College and Research Institute, Namakkal for providing multimycotoxins analysis facility.

Funding

This work was funded by the Department of Science and Technology, New Delhi, India, under Innovation in Science Pursuit for Inspired Research (INSPIRE) fellowship programme (IF140230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basheer Thazeem.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Research Involving Animal and Human Rights

Handling of bovine tannery fleshings (tannery solid waste material) and animal experiments are in strict accordance with the Institutional Animal Ethics Committee (IAEC) guidelines of Bharathiar University, Coimbatore, Tamil Nadu, India.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 386 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thazeem, B., Preethi, K., Umesh, M. et al. Nutritive Characterization of Delimed Bovine Tannery Fleshings for Their Possible Use as a Proteinaceous Aqua Feed Ingredient. Waste Biomass Valor 9, 1289–1301 (2018). https://doi.org/10.1007/s12649-017-9922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9922-0

Keywords

  • Amino acid
  • Bovine
  • Deliming
  • Fatty acid
  • Fish
  • Tannery fleshings