Skip to main content
Log in

Characterization and Strain Improvement of Aerobic Denitrifying EPS Producing Bacterium Bacillus cereus PB88 for Shrimp Water Quality Management

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A bacterial strain PB88 was isolated from intensive shrimp culture pond to study the denitrification process. On the basis of 16S rDNA analysis, strain PB88 was identified as Bacillus cereus PB88. It has the potential to remove 82.33 ± 3.24% \({\text{NO}}_{2}^{ - } {-} {\text{N}}\)in synthetic medium. The optimum pH, temperature and dissolved oxygen for the highest denitrification process of the PB88 were 8.0, 30 °C and 5.21 mg/l (150 rpm) respectively. PB88 harbour the genetic sequence of nitrite reductase (nirS) enzyme which is essential to complete aerobic denitrification process. One remarkable finding is that the experimental organism produced exopolysaccharide (EPS) during the denitrification process and EPS has the antibacterial property against shrimp pathogen Vibrio harveyi MTCC 7954 (inhibition zone of 5.21 mm) and Vibrio vulnificus MTCC 1145 (inhibition zone of 7.11 mm). Removal of \({\text{NO}}_{2}^{ - } {-} {\text{N}}\) in open base shrimp wastewater system were recorded as 98.51% by B. cereus PB88 and average shrimp body weight gained in treated system as 6 ± 0.54 to 8 ± 0.74 g within 7 days. Overall result indicated that B. cereus PB88 has the immense potential for the application in commercial shrimp culture as denitrifying agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Food and Agricultural Organization of the United Nations: The State of World Fisheries and Aquaculture 1998. p. 112. Food and Agriculture Organization FAO, Rome (2006)

    Google Scholar 

  2. Yung, C.S., Leung, P., Lin, B.H.: Comparative economics of shrimp farming in Asia. Aquaculture. 164, 183–200 (1998)

    Article  Google Scholar 

  3. van Rijn, J.: The potential for integrated biological treatment systems in recirculating fish culture-a review. Aquaculture 139, 181–201 (1996)

    Article  Google Scholar 

  4. Hopkins, J.S., Sandifer, P.A., Browdy, C.L.: Sludge management in intensive pond culture of shrimp: effects of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquac. Eng. 13, 11–30 (1994)

    Article  Google Scholar 

  5. Smith, P.T.: Physical and chemical characteristics of sediments from prawn farms and mangrove habitats on the Clarence River, Australia. Aquaculture 146, 47–83 (1996)

    Article  Google Scholar 

  6. Lin, S.H., Wu, C.L.: Electrochemical removal nitrite and ammonia for aquaculture. Water Res. 30, 715–721 (1996)

    Article  Google Scholar 

  7. Read, P., Fernandes, T.: Management of environmental impacts of marine aquaculture in Europe. Aquaculture 226, 139–163 (2003)

    Article  Google Scholar 

  8. Wang, Y.B., Xu, Z.R., Deng, Y.S.: Toxicity of ammonia and nitrite to aquaculture and the control measures. Feed. Ind. 23, 46–48 (2002)

    Google Scholar 

  9. Song, Z.F., An, J., Fu, G.H., Yang, X.L.: Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture. 319, 188–193 (2011)

    Article  Google Scholar 

  10. Li, P., Zhang, S., Liu, D.L.: Study progress of bacterial aerobic denitrification. J. Microbiol. 25, 60–64 (2005)

    Google Scholar 

  11. Li, Y.Q., Zhang, H.Y., Li, J., Wang, Q.Y., Li, Z.D.: Utilization of liquid oxygen in intensive shrimp aquaculture. Fish. Sci. 27, 401–403 (2008)

    Google Scholar 

  12. Staudt, C., Horn, H., Hempel, D.C., Neu, T.R.: Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol. Bioeng. 88, 585–592 (2004)

    Article  Google Scholar 

  13. Flemming, H.C., Wingender, J.: Extracellular polymeric substances (EPS): structural, ecological and technical aspects. In: Bitton, G (ed.) Encyclopedia of Environmental Microbiology. pp. 1223–1231. John Wiley & Sons, New York (2002)

    Google Scholar 

  14. Kolter, R., Greenberg, E.P.: Microbial sciences: the superficial life of microbes. Nature 441, 300–302 (2006)

    Article  Google Scholar 

  15. Sutherland, I.W.: The biofilm matrix—an immobilized but dynamic microbial environment. Trends. Microbiol. 9, 222–227 (2001)

    Article  Google Scholar 

  16. Orsod, M., Joseph, M., Huyop, F.: Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian Sea Bass (Latescalcarifer). Malays. J. Microbiol. 8(3), 170–174 (2012)

    Google Scholar 

  17. Barman, P., Bandyopadhyay, P., Mondal, K.C., Das Mohapatra, P K.: Improved cultivation of Black Tiger Shrimp by the application of microorganisms and novel biomolecules. Asian J. Sci. Techol. 6(7), 1624–1630 (2015)

    Google Scholar 

  18. Karunasagar, I., Pai, R., Malathi, G.R., Karunasagar, I.: Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture. 128, 203–209 (1994)

    Article  Google Scholar 

  19. Barman, P., Bandyopadhyay, P., Mondal, K.C., Das Mohapatra, P.K.: Water quality improvement of Penaeus monodon culture pond for higher productivity through bioremediation. Acta. Biol. Szeged. 59, 169–177 (2015)

    Google Scholar 

  20. Takaya, N., Antonina, M., Catalan-Sakairi, M.A., Sakaguchi, Y., Kato, I.: Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Microbiol. 69, 3152–3157 (2003)

    Article  Google Scholar 

  21. Kumar, A., İnce, İ.A., Kati, A., Chakraborty, R.: Brevibacteriumsiliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water. Int. J. Syst. Evol. Micr. 63, 511–515 (2013)

    Article  Google Scholar 

  22. Braker, G., Fesefeldt, A., Witzel, K.P.: Development of PCR Primer Systems for Amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769–3775 (1998)

    Google Scholar 

  23. Braker, G., Zhou, J., Wu, L., Shou, J.Z., Allan, H.: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific North West marine sediment communities. Appl. Environ. Microbiol. 66, 2096–2104 (2000)

    Article  Google Scholar 

  24. AWWA WPCF.: Standard Methods for the Examination of Water and Wastewater. 21st edn, AWWA, Washington DC (2005)

    Google Scholar 

  25. Ruiz, C.M., Roman, G., Sanchez, J.L.: A marine bacterial strain effective in producing antagonisms of other bacteria. Aquacult. Int. 4, 289–291 (1996)

    Article  Google Scholar 

  26. Arts, P.A.M., Robertson, L.A., Kuenen, J.G.: Nitrification and denitrification by Thiosphaerapantotropha in aerobic chemostat cultures. FEMS Microbiol. Ecol. 18, 305–316 (1995)

    Article  Google Scholar 

  27. Joo, H.S., Hirai, M., Shoda, M.: Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J. Biosci. Bioeng. 100, 184–191 (2005)

    Article  Google Scholar 

  28. Li, C., Yang, J., Wang, X., Wang, E., Li, B., He, R., Yuan, H.: Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulation bacterium Pseudomonas stutzeri YG-24. Bioresour. Technol. 182, 18–25 (2015)

    Article  Google Scholar 

  29. Mevel, G., Prieur, D.: Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions. Can. J. Microbiol. 46, 465–473 (2000)

    Article  Google Scholar 

  30. Gupta, A.B.: Thiosphaeera Pantotropha a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme Microb. Technol. 21, 589–595 (1997).

    Article  Google Scholar 

  31. Timmermans, P., Van, H.A.: Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water. Res. 17, 1249–1255 (1983)

    Article  Google Scholar 

  32. Zhang, J.B., Wu, P.X., Hao, B., Yu, Z.N.: Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102, 9866–9869 (2011)

    Article  Google Scholar 

  33. Ole, F., Maurizio, B., Francesca, C., Serena, R., Scot, W., Israel, P.: Intramolecular electron transfer in Pseudomonas aeruginosa cd1 nitrite reductase: thermodynamics and kinetics. Biophys. J. 96, 2849–2856 (2009)

    Article  Google Scholar 

  34. Philipport, L., Mirleau, P., Mazurier, S., Siblot, S., Hartmann, A., Lemanceau, P.: Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes. Biochim. Biophys. Acta. 1517, 436–440 (2001)

    Article  Google Scholar 

  35. Barman, P., Kati, A., Mandal, A.K., Bandyopadhyay, P., Das Mohapatra, P.K.: Biopotentiality of Bacillus cereus PB45 for nitrogenous waste detoxification in ex situ model. Aquacult. Int (2016). doi: 10.1007/s10499-016-0105-y

    Google Scholar 

  36. Her, J.J., Huang, J.S.: Influences of carbon source and C/N ratio on nitrate/nitrate denitrification and carbon break through. Bioresour. Technol. 54, 45–51 (1995)

    Article  Google Scholar 

  37. Yang, X.P., Wang, S.M., Zhang, De-W., Zhou, L.X.: Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854–862 (2011)

    Article  Google Scholar 

  38. Guo, L., Chen, Q., Fang, F., Hu, Z., Wu, J., Miao, A., Xiao, L., Chen, X., Yang, L.: Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water. Bioresour. Technol. 142, 45–51 (2013)

    Article  Google Scholar 

  39. Duan, J., Fang, H., Su, B., Chen, J., Lin, J.: Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour. Technol. 179, 421–428 (2015)

    Article  Google Scholar 

  40. Gupta, A., Gupta, S.: Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water. Res. 35, 1714–1722 (2001)

    Article  Google Scholar 

  41. Patureau, D., Helloin, E., Rustrain, E., Bouchez, T., Delgenes, J.P., Moletta, R.: Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgulaaero denitrificans. Water. Res. 351, 189–197 (2001)

    Article  Google Scholar 

  42. Karthikeyan, J.: Aquaculture (shrimp farming), its influence on environment. American Society of Civil Engineers, Calcutta (1994)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. D. K. Chopra group CEO of Biostadt India Limited, Mumbai, India for his kind support and Mr. Pravas Singh Assistant professor, Department of Computer Science, Vidyasagar University for development of equation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Das Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, P., Bandyopadhyay, P., Kati, A. et al. Characterization and Strain Improvement of Aerobic Denitrifying EPS Producing Bacterium Bacillus cereus PB88 for Shrimp Water Quality Management. Waste Biomass Valor 9, 1319–1330 (2018). https://doi.org/10.1007/s12649-017-9912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9912-2

Keywords

Navigation