Skip to main content

Advertisement

Log in

Recent Progress on Utilization of Metal-Rich Wastes in Ferrite Processing: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Ferrite is an important functional material with a wide range of applications. Its excellent structural and chemical stabilities also make it a candidate for stabilizing heavy metal-containing wastes. Utilization of metal-rich wastes in ferrite processing, especially those containing heavy metals enables benefits of both waste recycling and heavy-metal stabilization to be achieved. In this paper, we extensively review the types of waste that have been used in such applications, and their roles and final products in ferrite processing. Processing methods for ferrite from waste are compared with those of ferrite from pure chemicals. The properties and applications of waste-derived ferrites are summarized, and the potential for stabilization of heavy metals in ferrite structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a*:

Color position between red (+a*) and green (−a*)

b*:

Color position between yellow (+b*) and blue (−b*)

emu :

Magnetic unit

H A :

Magnetic anisotropy field

H c :

Coercivity

L*:

Lightness of color, ranging from black (L* = 0) to white (L* = 100)

Me :

Metal ions other than Fe in ferrite structures

M S :

Saturation magnetization

Oe :

Oersted, CGS unit of magnetic field strength

R :

One layer containing three oxygen anions with a single Ba2+, Sr2+, Pb2+, or Ca2+

S :

Four layers each containing four oxygen anions, as in spinel structure

T :

Four layers of oxygen anions, with one Ba2+ or another divalent ion replacing an oxygen anion in the middle two layers

References

  1. Murase, T., Hirai, N.: Recent development of iron oxide for ferrite and its manufacturing technique from pickling waste liquor of steel sheet. Tetsu to Hagane 79, 1129–1137 (1993)

    Article  Google Scholar 

  2. Lu, H.C., Chang, J.E., Shih, P.H., Chiang, L.C.: Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process. J. Hazard. Mater. 150, 504–509 (2008). doi:10.1016/j.jhazmat.2007.04.130

    Article  Google Scholar 

  3. Marcello, R.R., Galato, S., Peterson, M., Riella, H.G., Bernardin, A.M.: Inorganic pigments made from the recycling of coal mine drainage treatment sludge. J. Environ. Manag. 88, 1280–1284 (2008). doi:10.1016/j.jenvman.2007.07.005

    Article  Google Scholar 

  4. Chen, D., Hou, J., Yao, L., Jin, H., Qian, G.R., Xu, Z.P.: Ferrite materials prepared from two industrial wastes: electroplating sludge and spent pickle liquor. Sep. Purif. Technol. 75, 210–217 (2010). doi:10.1016/j.seppur.2010.07.009

    Article  Google Scholar 

  5. Hajjaji, W., Pullar, R.C., Zanelli, C., Seabra, M.P., Dondi, M., Labrincha, J.A.: Compositional and chromatic properties of strontium hexaferrite as pigment for ceramic bodies and alternative synthesis from wiredrawing sludge. Dyes Pigment. 96, 659–664 (2013). doi:10.1016/j.dyepig.2012.10.011

    Article  Google Scholar 

  6. Peng, C.H., Bai, B.S., Chen, Y.F.: Study on the preparation of Mn–Zn soft magnetic ferrite powders from waste Zn–Mn dry batteries. Waste Manag. 28, 326–332 (2008). doi:10.1016/j.wasman.2007.03.020

    Article  Google Scholar 

  7. Schwarz, M., Veverka, M., Michalkova, E., Lalik, V., Veverkova, D.: Utilization of industrial waste for ferrite pigments production. Chem. Pap. 66, 248–258 (2012). doi:10.2478/s11696-012-0154-2

    Article  Google Scholar 

  8. Hwang, Y.: Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst. Mater. Lett. 60, 3277–3280 (2006). doi:10.1016/j.matlet.2006.03.010

    Article  Google Scholar 

  9. Goldman, A.: Modern Ferrite Technology, 2nd edn. Springer Science and Business Media, Inc., Pittsburgh (2006)

    Google Scholar 

  10. Harris, V.G.: Modern microwave ferrites. IEEE Trans. Magn. 48, 1075–1104 (2012). doi:10.1109/TMAG.2011.2180732

    Article  Google Scholar 

  11. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009). doi:10.1016/j.jmmm.2009.01.004

  12. Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012). doi:10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  13. Ahmed, Y.M.Z., Ewais, E.M.M., Zaki, Z.I.: In situ synthesis of high density magnetic ferrite spinel (MgFe2O4) compacts using a mixture of conventional raw materials and waste iron oxide. J. Alloys Compd. 489, 269–274 (2010). doi:10.1016/j.jallcom.2009.09.069

    Article  Google Scholar 

  14. Liu, C.W., Lin, C.H., Fu, Y.P.: Characterization of Mn–Zn ferrite prepared by a hydrothermal process from used dry batteries and waste steel pickling liquor. J. Am. Ceram. Soc. 90, 3349–3352 (2007). doi:10.1111/j.1551-2916.2007.01902.x

    Article  Google Scholar 

  15. Lopez-Delgado, A., de Vidales, J.L.M., Vila, E., Lopez, F.A.: Synthesis of mixed ferrite with spinel-type structure from a stainless steelmaking solid waste. J. Alloys Compd. 281, 312–317 (1998). doi:10.1016/S0925-8388(98)00783-X

    Article  Google Scholar 

  16. Li, K., Peng, C., Jiang, K.: The recycling of Mn-Zn ferrite wastes through a hydrometallurgical route. J. Hazard. Mater. 194, 79–84 (2011). doi:10.1016/j.jhazmat.2011.07.060

    Article  Google Scholar 

  17. Higuchi, K., Gushima, A., Ikeda, T.: Synthesis of calcium ferrite from waste gypsum board. Tetsu to Hagane 101, 343–350 (2015)

    Article  Google Scholar 

  18. Chen, D., Yu, Y.Z., Zhu, H.J., Liu, Z.Z., Xu, Y.F., Liu, Q., Qian, G.R.: Ferrite process of electroplating sludge and enrichment of copper by hydrothermal reaction. Sep. Purif. Technol. 62, 297–303 (2008). doi:10.1016/j.seppur.2008.01.003

    Article  Google Scholar 

  19. Xiao, L., Zhou, T., Meng, J.: Hydrothermal synthesis of Mn-Zn ferrites from spent alkaline Zn–Mn batteries. Particuology 7, 491–495 (2009). doi:10.1016/j.partic.2009.04.012.

    Article  Google Scholar 

  20. Gabal, M.A., Al-Luhaibi, R.S., Al Angari, Y.M: Mn–Zn nano-crystalline ferrites synthesized from spent Zn–C batteries using novel gelatin method. J. Hazard. Mater. 246–247, 227–233 (2013). doi:10.1016/j.jhazmat.2012.12.026

    Article  Google Scholar 

  21. Pullar, R.C., Hajjaji, W., Amaral, J.S., Seabra, M.P., Labrincha, J.A: Magnetic properties of ferrite ceramics made from wastes. Waste Biomass Valor. 5, 133–138 (2013). doi:10.1007/s12649-013-9207-1.

    Article  Google Scholar 

  22. Rashad, M.M., Fouad, O.A.: Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO. Mater. Chem. Phys. 94, 365–370 (2005). doi:10.1016/j.matchemphys.2005.05.028

    Article  Google Scholar 

  23. Chen, D., Mei, C.Y., Yao, L.H., Jin, H.M., Qian, G.R., Xu, Z.P.: Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J. Hazard. Mater. 192, 1675–1682 (2011). doi:10.1016/j.jhazmat.2011.06.091

    Article  Google Scholar 

  24. Lin, C.H., Wang, C.W., Fu, Y.P.: Characterization of Ni–Cu–Zn ferrite prepared from industrial wastes. Ceram. Int. 35, 2325–2328 (2009). doi:10.1016/j.ceramint.2009.01.011

    Article  Google Scholar 

  25. Xi, G., Yang, L., Lu, M.: Study on preparation of nanocrystalline ferrites using spent alkaline Zn–Mn batteries. Mater. Lett. 60, 3582–3585 (2006). doi:10.1016/j.matlet.2006.03.064

    Article  Google Scholar 

  26. Hu, P., Pan, D., Zhang, S., Tian, J., Volinsky, A.A.: Mn–Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn–Mn batteries. J. Alloys Compd. 509, 3991–3994 (2011). doi:10.1016/j.jallcom.2010.12.204

    Article  Google Scholar 

  27. Tu, Y.J., You, C.F., Chang, C.K., Wang, S.L., Chan, T.S.: Adsorption behavior of As (III) onto a copper ferrite generated from printed circuit board industry. Chem. Eng. J. 225, 433–439 (2013). doi:10.1016/j.cej.2013.03.120

    Article  Google Scholar 

  28. Zhu, S., Fang, S., Huo, M., Yu, Y., Chen, Y., Yang, X., Geng, Z., Wang, Y., Bian, D., Huo, H.: A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue. J. Hazard. Mater. 292, 173–179 (2015). doi:10.1016/j.jhazmat.2015.03.028

    Article  Google Scholar 

  29. Pullar, R.C., Saeli, M., Novais, R.M., Amaral, J.S., Labrincha, J.A.: Valorisation of industrial iron oxide waste to produce magnetic barium hexaferrite. Chem. Sel. 1, 819–825 (2016). doi:10.1002/slct.201500042

    Google Scholar 

  30. Kitamura, M., Tanaka, A., Nishi, H., Kubota, T., Kanazawa, K.P., Honda, Y., Takatsuki, H.: Reforming of sludge produced by ferrite process treatment of wastewater containing heavy metal ions and phosphate. Jpn. Soc. Water Environ. 21, 690–695 (1998)

    Article  Google Scholar 

  31. Hiromichi, S., Katsuo, Y., Ken-ichi, I., Kohzo, K.: Development of television wave absorbing wall panel by using ferrite powder made from gilding sludge. Archi. Inst. Jpn. 2000, 1213–1214 (2000)

    Google Scholar 

  32. Li, L., Chen, K., Liu, H., Tong, G., Qian, H., Hao, B.: Attractive microwave-absorbing properties of M–BaFe12O19 ferrite. J. Alloys Compd. 557, 11–17 (2013). doi:10.1016/j.jallcom.2012.12.148

    Article  Google Scholar 

  33. Zhang, S., Niu, H., Cai, Y., Zhao, X., Shi, Y.: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607 (2010). doi:10.1016/j.cej.2010.02.013

    Article  Google Scholar 

  34. Abdel Halim, K.S., Ismail, A.M., Khedr, M.H., Abadir, M.F.: Catalytic oxidation of CO gas over nanocrystallite Cu x Mn 1–x Fe2O4. Top. Catal. 47, 66–72 (2008). doi:10.1007/s11244-007-9031-6

    Article  Google Scholar 

  35. Chen, C.C., Butler, E., Ahmad, M.A., Hung, Y.T., Fu, Y.P.: Characterizations of TiO2@Mn-Zn ferrite powders for magnetic photocatalyst prepared from used alkaline batteries and waste steel pickling liquor. Mater. Res. Bull. 50, 178–182 (2014). doi:10.1016/j.materresbull.2013.09.037

    Article  Google Scholar 

  36. Liu, R., Wu, C.F., Yeh, R.Y., Lin, C.H., Hung, Y.: Degradation of FBL dye wastewater by magnetic photocatalysts from scraps. J. NanoMater. 2015, 18–21 (2013). doi:10.1155/2015/651021

  37. Casbeer, E., Sharma, V.K., Li, X.Z.: Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep. Purif. Technol. 87, 1–14 (2012). doi:10.1016/j.seppur.2011.11.034

    Article  Google Scholar 

  38. Silva, R.D.A., Castro, C.D., Viganico, E.M., Petter, C.O., Schneider, I.A.H: Selective precipitation/UV production of magnetite particles obtained from the iron recovered from acid mine drainage. Miner. Eng. 29, 22–27 (2012). doi:10.1016/j.mineng.2011.12.013

    Article  Google Scholar 

  39. Kiyama, M.: Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions. Bull. Chem. Soc. Jpn. 47, 1646–1650 (1974)

    Article  Google Scholar 

  40. Tamaura, Y., Chuo, G. S., Katsura, T.: The Fe3O4-formation by the “ferrite process”: oxidation of the reactive Fe(OH)2 suspension induced by sucrose. Water Res. 13, 21–31 (1979). doi:10.1016/0043-1354(79)90250-1

    Article  Google Scholar 

  41. Tokoro, C., Takao, D., Sasaki, H.: Quantitative evaluation of ferrite formation at ambient temperature in acid mine drainage containing iron. Shigen to Sozai 122, 155–162 (2006)

    Article  Google Scholar 

  42. Tokoro, C., Miyazawa, H., Takada, T., Takao, D., Badulis, G.C., Sasaki, H.: Effects of co-existing ions on ferrite formation at ambient temperature in the treatment of acid mine drainage containing iron. Shigen to Sozai 123, 103–109 (2007)

    Article  Google Scholar 

  43. Kitamura, M., Nomura, T., Tokumitsu, K., Kawabata, N., Honda, Y.: Stabilizing of sludge produced by ferrite process treatment of wastewater containing nickel ion. Jpn. Soc. Water Environ. 24, 850–855 (2001).

    Article  Google Scholar 

  44. Kitamura, M., Hayashi, K., Kawabata, N.: Stabilization of sludge produced by ferrite process treatment of wastewater containing nickel ion and citric acid. Resour. Process. 49, 146–152 (2002). doi:10.4144/rpsj1986.49.146

    Article  Google Scholar 

  45. Hibino, T., Kitamura, M., Honda, Y.: Stabilization of sludge produced by ferrite treatment of wastewater containing cadmium ion. Resour. Process. 53, 107–115 (2006). doi:10.4144/rpsj.53.107

    Article  Google Scholar 

  46. Li, N.H., Lo, S.L., Hu, C.Y., Hsieh, C.H., Chen, C.L.: Stabilization and phase transformation of CuFe2O4 sintered from simulated copper-laden sludge. J. Hazard. Mater. 190, 597–603 (2011). doi:10.1016/j.jhazmat.2011.03.089

    Article  Google Scholar 

  47. Tang, Y.Y., Shih, K.M., Chan, K.: Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge. Chemosphere. 80, 375–380 (2010). doi:10.1016/j.chemosphere.2010.04.048

    Article  Google Scholar 

  48. Tang, Y.Y., Chui, S.S. Y., Shih, K., Zhang, L.: Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors. Environ. Sci. Technol. 45, 3598–3604 (2011). doi:10.1021/es103596k

    Article  Google Scholar 

  49. Tang, Y.Y., Shih, K.: Stabilization mechanisms and reaction sequences for sintering simulated copper-laden sludge with alumina. ACS Sustain. Chem. Eng. 1, 1239–1245 (2013). doi:10.1021/sc400087g

    Google Scholar 

  50. Tang, Y.Y., Lu, X., Shih, K.: Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics. Chemosphere. 117, 575–581 (2014). doi:10.1016/j.chemosphere.2014.08.065

    Article  Google Scholar 

  51. Tang, Y.Y., Chan, S.W., Shih, K.: Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. Waste Manag. 34, 1085–1091 (2014). doi:10.1016/j.wasman.2013.07.001

    Article  Google Scholar 

  52. Li, L., Dong, X., Dong, Y., Zheng, Y. M., Zhu, L., Liu, J.: Thermal conversion of hazardous metal copper via the preparation of CuAl2O4 Spinel-based ceramic membrane for potential stabilization of simulated copper-rich waste. ACS Sustain. Chem. Eng. 3, 2611–2618 (2015). doi:10.1021/acssuschemeng.5b00686

    Article  Google Scholar 

  53. Tang, Y.Y., Shih, K., Wang, Y., Chong, T.C.: Zinc stabilization efficiency of aluminate spinel structure and its leaching behavior. Environ. Sci. Technol. 45, 10544–10550 (2011). doi:10.1021/es201660t

    Article  Google Scholar 

  54. Mao, L., Cui, H., An, H., Wang, B., Zhai, J., Zhao, Y., Li, Q.: Stabilization of simulated lead sludge with iron sludge via formation of PbFe12O19 by thermal treatment. Chemosphere. 117, 745–752 (2014). doi:10.1016/j.chemosphere.2014.08.027

    Article  Google Scholar 

  55. Lu, X., Shih, K.: Formation of lead-aluminate ceramics: reaction mechanisms in immobilizing the simulated lead sludge. Chemosphere. 138, 156–163 (2015). doi:10.1016/j.chemosphere.2015.05.090

    Article  Google Scholar 

  56. Su, M., Liao, C., Chuang, K. H., Wey, M. Y., Shih, K.: Cadmium stabilization efficiency and leachability by CdAl4O7 monoclinic Structure. Environ. Sci. Technol. 49, 14452–14459 (2015). doi:10.1021/acs.est.5b02072

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Iizuka, A. & Shibata, E. Recent Progress on Utilization of Metal-Rich Wastes in Ferrite Processing: A Review. Waste Biomass Valor 9, 1669–1679 (2018). https://doi.org/10.1007/s12649-017-9909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9909-x

Keywords

Navigation