Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 7, pp 1073–1086 | Cite as

Earthworms as Organic Waste Managers and Biofertilizer Producers

  • Sartaj Ahmad Bhat
  • Jaswinder Singh
  • Adarsh Pal VigEmail author
Review

Abstract

Vermicomposting is the processing of organic materials by earthworms into homogeneous and humus-like material known as vermicompost. It is a complex mixture of fecal matter of earthworms and microorganisms. In vermicomposting system, earthworms act as voracious feeder, modifying composition of organic waste, gradually reducing its organic carbon and C:N ratio and retains more nutrients (nitrogen, potassium, phosphorus, calcium). The nutrient content is generally higher in vermicompost than in the traditional compost. Earthworm increases the surface area of any material and makes it more favorable for the activity of microbiota for further decomposition. Earthworms have the ability to consume various types of organic wastes such as livestock excreta, cattle dung, oil palm waste, agricultural residue, sewage sludge and other agro-industrial refuse. Studies suggested that organic wastes can be managed by the use of different species of earthworms and the production of vermicompost as a powerful biofertilizer in sustainable agriculture discouraging the use of chemical fertilizers. Vermicomposting accelerates the bioconversion process by two to five times as compared to traditional composting, thereby hastens the conversion of wastes into valuable biofertilizer. In the present review, earthworms are described as waste managers in utilizing and changing the physico-chemical properties of the organic wastes and highlight the need for the use of vermicomposting in organic waste recycling. Earthworm-microbe interaction and the nutrient status of final vermicompost are also discussed in detail.

Keywords

Vermicomposting Organic waste Nutrients Microbes Sustainable development 

Notes

Acknowledgements

The authors acknowledge University Grants Commission (UPE and BSR) for financial support and Head, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar for necessary laboratory facilities.

Author contributions

SAB collected, reviewed the literature and drafted the manuscript. JS improved the quality of the manuscript. APV provided guidance and finalized the manuscript. All authors read and approved final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Chalmin, P., Gaillochet, C.: From waste to resource, An abstract of world waste survey. Cyclope, Veolia Environmental Services, Edition Economica, France (2009)Google Scholar
  2. 2.
    Pappu, A., Saxena, M., Asolekar, S.R.: Solid wastes generation in India and their recycling potential in building materials. Building Environ. 42, 2311–2320 (2007)Google Scholar
  3. 3.
    Sarkhel, P., Banarjee, S.: Municipal solid waste management, source-seperated waste and stakeholder’s attitude: a contingent valuation study. Environ. Dev. Sustain. 12, 611–630 (2009)Google Scholar
  4. 4.
    Ostos, J.C., Lopez-Garrido, R., Murillo, J.M., Lopez, R.: Substitution of peat for municipal solid waste and sewage sludge based composts in nursery growing media: effect on growth and nutrition of the native shrub Pistacia lentiscus. Bioresour. Technol. 99, 1793–1800 (2008)Google Scholar
  5. 5.
    Bhat, S.A., Singh, J., Vig, A.P.: Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus 4, 11 (2015)Google Scholar
  6. 6.
    Atiyeh, R.M., Arancon, N., Edwards, C.A., Metzger, J.D.: The influence of earthworm processed pig manure on the growth and productivity of marigolds. Bioresour. Technol. 81, 103–108 (2001)Google Scholar
  7. 7.
    Martin, J.P.: Darwin on earthworms: the formation of vegetable moulds. Bookworm Publishing, Ontario (1976)Google Scholar
  8. 8.
    Julka, J.M.: Diversity and distribution of exotic earthworms (Annelida, Oligochaeta) in India. A review. In: Chaudhuri, Priyasankar, Singh, S.M. (eds.) Biology and ecology of tropical earthworms, pp. 73–83. Discovery Publishing House New Delhi, India (2014)Google Scholar
  9. 9.
    Munnoli, P.M., Teixeira da Silva, J.A., Bhosle, S.: Dynamics of the soil—earthworm–plant relationship: a review. Dyn. Soil Dyn. Plant 4, 1–21 (2010)Google Scholar
  10. 10.
    Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O., Chung, Y.R.: Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour. Technol. 100, 4396–4403 (2009)Google Scholar
  11. 11.
    Vaz-Moreira, I., Maria, M.E., Silva, C.M., Nunes, O.C.: Diversity of bacterial isolates from commercial and homemade composts. Microbial. Ecol. 55, 714–722 (2008)Google Scholar
  12. 12.
    Elmer, W.H.: Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Dis. 93, 175–179 (2009)Google Scholar
  13. 13.
    Rouelle, J.: Introduction of an amoeba and Rhizobium Japonicum into the gut of Eisenia fetida (Sav.) and Lumbricus terrestris L. In: Satchell, J.E. (ed.) Earthworm ecology: from darwin to vermiculture, pp. 375–381. Chapman and Hall, New York (1983)Google Scholar
  14. 14.
    Madsen, E.L., Alexander, M.: Transport of Rhizobium and Pseudomonas through soil. Soil Sci. Soc. Am. J. 46, 557–560 (1982)Google Scholar
  15. 15.
    Singleton, D.R., Hendrix, P.F., Coleman, D.C., Whitman, W.B.: Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol. Biochem. 35, 1547–1555 (2003)Google Scholar
  16. 16.
    Gopal, M., Gupta, A., Sunil, E., Thomas, V.G.: Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr. Microbiol. 59, 15–20 (2009)Google Scholar
  17. 17.
    Khambata, S.R., Bhat, J.V.: Studies on a new oxalatedecomposing bacterium, Pseudomonas oxalaticus. J. Bacteriol. 66, 505–507 (1953)Google Scholar
  18. 18.
    Doube, B.M., Stephens, P.M., Davorena, C.W., Ryderb, M.H.: Interactions between earthworms, beneficial soil microorganisms and root pathogens. Appl. Soil Ecol. 1, 3–10 (1994)Google Scholar
  19. 19.
    Bouche, M.B.: Strategies lombriciennes. In: Lohm, U., Persson, T. (eds.), Soil organisms as components of ecosystems. Biological Bulletin, Stockholm 25, 122–132 (1977)Google Scholar
  20. 20.
    Edwards, C.A., Lofty, J.R.: Biology of earthworms. Chapman and Hall, London (1972)Google Scholar
  21. 21.
    Chowdappa, P., Biddappa, C.C., Sujatha, S.: Efficient recycling of organic wastes in arecanut (Areca catechu L.) and cocoa (Theobroma cacao L.) plantation through vermicomposting. Indian. J. Agric. Sci. 69, 563–566 (1999)Google Scholar
  22. 22.
    Ismail, S.A.: Earthworms in soil fertility management. In: Thampan, P.K. (ed.) Organic Agriculture. pp 77–100 (1995)Google Scholar
  23. 23.
    Edwards, C.A., Fletcher, K.E.: Interaction between earthworms and microorganisms in organic matter breakdown. Agric. Ecosyst. Environ. 20, 235–249 (1988)Google Scholar
  24. 24.
    Vivas, A., Moreno, B., Garcia-Rodriguez, S., Benitez, E.: Assessing the impact of composting and vermicomposting on bacterial community size and structure, and functional diversity of an olive-mill waste. Bioresour. Technol. 100, 1319–1326 (2009)Google Scholar
  25. 25.
    Edwards, C.A., Bohlen, P.J.: Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London (1996)Google Scholar
  26. 26.
    Brown, G.G., Barois, I., Lavelle, P.: Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000)Google Scholar
  27. 27.
    Zhang, B.G., Li, G.T., Shen, T.S., Wang, J.K., Sun, Z.: Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia foetida. Soil Biol. Biochem. 32, 2055–2062 (2000)Google Scholar
  28. 28.
    Aira, M., Monroy, F., Dominguez, J.: Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci. Total Environ. 385, 252–261 (2007)Google Scholar
  29. 29.
    Aira, M., Dominguez, J.: Optimizing vermicomposting of animal wastes: effects of rate of manure application on carbon loss and microbial stabilization. J. Environ. Manage. 88, 1525–1529 (2008)Google Scholar
  30. 30.
    Monson, C.C., Damodharan, G., Kumar, S., Kanakasbai, V.: Composing of kitchen waste using in vessel and vermibeds. Proceedings of international conference on cleaner tech and environmental management, 4–6th January (pp. 678–682). Pondichery Engineering College, Pondichery (2007)Google Scholar
  31. 31.
    Kale, R.D., Mallesh, B.C., Kubra, B., Bhagyaraj, D.J.: Influence of vermicompost application on available micronutrients and selected microbial populations in paddy field. Soil Biol. Biochem. 24, 1317–1320 (1992)Google Scholar
  32. 32.
    Chen, Y., Zhang, Y., Zhang, Q., Xu, L., Li, R., Luo, X., Zhang, X., Tong, J.: Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting. Environ. Sci. Pollut. Res. 22, 17161–17170 (2015)Google Scholar
  33. 33.
    Aira, M., Monroy, F., Dominguez, J.: Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol. Biochem. 40, 2511–2516 (2008)Google Scholar
  34. 34.
    Koubova, A., Chronakova, A., Pizl, V., Sanchez-Monedero, M.A., Elhottova, D.: The effects of earthworms Eisenia spp. on microbial community are habitat dependent. Eur. J. Soil Biol. 68, 42–55 (2015)Google Scholar
  35. 35.
    Sampedro, L., Dominguez, J.: Stable isotope natural abundances (δ 13C and δ 15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Appl. Soil Ecol. 38, 91–99 (2008)Google Scholar
  36. 36.
    Munnoli, P.M., Bhosle, S.: Water-holding capacity of earthworms’ vermicompost made of sugar industry waste (press mud) in mono and poly culture vermireactors. Environmentalist 31, 394–400 (2011)Google Scholar
  37. 37.
    Garg, V.K., Gupta, R., Yadav, A.: Potential of vermicomposting technology in solid waste management. In: Pandey, A., et al. (eds.) Current developments in solid state fermentation. Asia-Tech, pp. 468–511. Publishers Inc., New Delhi (2007)Google Scholar
  38. 38.
    Yadav, A., Garg, V.K.: Nutrient recycling from industrial solid wastes and weeds by vermiprocessing using earthworms. Pedosphere 23, 668–677 (2013)Google Scholar
  39. 39.
    Neuhauser, E.F., Hartenstein, R., Kaplan, D.L.: Growth of the earthworm Eisenia foetida in relation to population density and food rationing. OIKOS 35, 93–98 (1980)Google Scholar
  40. 40.
    Ndegwa, P.M., Thompson, S.A.: Effect of C-to-N ratio on vermicomposting of biosolids. Bioresour. Technol. 75, 7–12 (2000)Google Scholar
  41. 41.
    Tripathi, G., Bhardwaj, P.: Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresour. Technol. 92, 275–278 (2004)Google Scholar
  42. 42.
    Gajalakshmi, S., Ramasamy, E.V., Abbasi, S.A.: Composting–vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresour. Technol. 96, 1057–1061 (2005)Google Scholar
  43. 43.
    Singh, J., Kaur, A., Vig, A.P.: Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida. Appl. Biochem. Biotechnol. 174, 1403–1419 (2014)Google Scholar
  44. 44.
    Suthar, S.: Bioconversion of post-harvest residues and cattle shed manure into value added products using earthworm Eudrilus eugeniae. Ecol. Eng. 32, 206–214 (2008)Google Scholar
  45. 45.
    Dominguez, J., Edwards, C. A.: Effects of stocking rate and moisture contents on the growth and maturation of Eisenia anderi (Oligochaeta) in pig manure. Soil Biol. Biochem. 29, 143–746 (1997)Google Scholar
  46. 46.
    Edwards, C.A., Dominguez, J., Neuhauser, E.F.: Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biol. Fert. Soils. 27, 155–161 (1998)Google Scholar
  47. 47.
    Garg, V.K., Kaushik, P., Yadav, Y.K.: Effect of stocking density and food quality on the growth and fecundity of an epigeic earthworm (Eisenia fetida) during vermicomposting. Environmentalist 28, 483–488 (2008)Google Scholar
  48. 48.
    Suthar, S.: Growth and fecundity of earthworm, Perionyx excavates and Perionyx sansibaricus in cattle waste solids. Environ. Sci. Technol. 29, 78–84 (2009)Google Scholar
  49. 49.
    Reinecke, A.J., Viljoen, S.A., Saayman, R.J.: The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia foetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biol. Biochem. 24, 1295–1307 (1992)Google Scholar
  50. 50.
    Reinecke, A.J., Venter, J.M.: Moisture preference, growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol. Fert. Soils. 3, 135–141 (1987)Google Scholar
  51. 51.
    Xie, D., Wu, W., Hao, X., Jiang, D., Li, X., Bai, L.: Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida. Environ. Sci. Pollut. Res. 23, 7767–7775 (2016)Google Scholar
  52. 52.
    Das, S., Deka, P., Goswami, L., Sahariah, B., Hussain, N., Bhattacharya, S.S.: Vermiremediation of toxic jute mill waste employing Metaphire posthuma. Environ. Sci. Pollut. Res. 23, 15418–15431 (2016)Google Scholar
  53. 53.
    Malinska, K., Zabochnicka-Swiatek, M., Caceres, R., Marfa, O.: The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol. Eng. 90, 35–41 (2016)Google Scholar
  54. 54.
    Yadav, A., Suthar, S., Garg, V.K.: Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry. Environ. Sci. Pollut. Res. 22, 14702–14709 (2015)Google Scholar
  55. 55.
    Hanc, A., Vasak, F.: Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. Int. J. Environ. Sci. Technol. 12, 1183–1190 (2015)Google Scholar
  56. 56.
    Suthar, S., Kumar, K., Mutiyar, P.K.: Nutrient recovery from compostable fractions of municipal solid wastes using vermitechnology. J. Mater. Cycles Waste. Manage. 17, 174–184 (2015)Google Scholar
  57. 57.
    Xing, M., Lv, B., Zhao, C., Yang, J.: Towards understanding the effects of additives on the vermicomposting of sewage sludge. Environ. Sci. Pollut. Res. 22, 4644–4653 (2015)Google Scholar
  58. 58.
    Fu, X., Huang, K., Chen, X., Li, F., Cui, G.: Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthworms Bimastus parvus. Bioresour. Technol. 175, 646–650 (2015)Google Scholar
  59. 59.
    Fu, X., Cui, G., Huang, K., Chen, X., Li, F., Zhang, X., Li, F.: Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community. Environ. Sci. Pollut. Res. 23, 4522–4530 (2016)Google Scholar
  60. 60.
    Bhat, S.A., Singh, J., Vig, A.P.: Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test. Environ. Sci. Pollut. Res. 22, 11236–11254 (2015)Google Scholar
  61. 61.
    Varma, V.S., Yadav, J., Das, S., Kalamdhad, A.S.: Potential of waste carbide sludge addition on earthworm growth and organic matter degradation during vermicomposting of agricultural wastes. Ecol. Eng. 83, 90–95 (2015)Google Scholar
  62. 62.
    Rajpal, A., Bhargava, R., Chopra, A.K., Kumar, T.: Vermistabilization and nutrient enhancement of anaerobic digestate through earthworm species Perionyx excavatus and Perionyx sansibaricus. J. Mater. Cycle. Waste Manage. 16, 219–226 (2014)Google Scholar
  63. 63.
    Hanc, A., Chadimova, Z.: Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 168, 240–244 (2014)Google Scholar
  64. 64.
    Lim, P.N., Wu, T.Y., Clarke, C., Nik Daud, N.N.: A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. Int. J. Environ. Sci. Technol. 2, 2533–2544 (2015)Google Scholar
  65. 65.
    Suthar, S., Gairola, S.: Nutrient recovery from urban forest leaf litter waste solids using Eisenia fetida. Ecol. Eng. 71, 660–666 (2014)Google Scholar
  66. 66.
    Bhat, S.A., Singh, J., Vig, A.P.: Genotoxic assessment and optimization of Pressmud with the help of exotic earthworm Eisenia fetida. Environ. Sci. Pollut. Res. 21, 8112–8123 (2014)Google Scholar
  67. 67.
    Goswami, L., Sarkar, S., Mukherjee, S., Das, S., Barman, S., Raul, P., Bhattacharyya, P., Mandal, N.C., Bhattacharya, S., Bhattacharya, S.S.: Vermicomposting of tea factory coal ash: metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresour. Technol. 166, 96–102 (2014)Google Scholar
  68. 68.
    Bhat, S.A., Singh, J., Vig, A.P.: Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. 20, 5975–5982 (2013)Google Scholar
  69. 69.
    Najar, I.A., Khan, A.B.: Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environ. Sci. Pollut. Res. 20, 6406–6417 (2013)Google Scholar
  70. 70.
    Azizi, A.B., Lim, M.P.M., Noor, Z.M., Abdullah, N.: Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicol. Environ. Saf. 90, 13–20 (2013)Google Scholar
  71. 71.
    Singh, A., Jain, A., Sarma, B.K., Abhilash, P.C., Singh, H.B.: Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida. Waste Manag. 33, 1113–1118 (2013)Google Scholar
  72. 72.
    Suthar, S., Mutiyar, P.K., Singh, S.: Vermicomposting of milk processing industry sludge spiked with plant wastes. Bioresour. Technol. 116, 214–219 (2012)Google Scholar
  73. 73.
    Vig, A.P., Singh, J., Wani, S.H., Dhaliwal, S.S.: Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresour. Technol. 102, 7941–7945 (2011)Google Scholar
  74. 74.
    Singh, J., Kaur, A., Vig, A.P., Rup, P.J.: Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol. Environ. Saf. 73, 430–435 (2010)Google Scholar
  75. 75.
    Kaur, A., Singh, J., Vig, A.P., Dhaliwal, S.S., Rup, P.J.: Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresour. Technol. 101, 8192–8198 (2010)Google Scholar
  76. 76.
    Singh, S., Bhat, S.A., Singh, J., Kaur, R., Vig, A.P.: Vermistabilization of thermal power plant fly ash using Eisenia fetida. J. Ind. Pollut. Contr. 32, 554–561 (2016)Google Scholar
  77. 77.
    Suthar, S., Pandey, B., Gusain, R., Gaur, R.Z., Kumar, K.: Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system. Environ. Sci. Pollut. Res. 24, 199–207 (2017)Google Scholar
  78. 78.
    Yadav, A., Garg, V.K.: Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. Int. J. Recycl. Org. Waste Agricult. 5, 301–309 (2016)Google Scholar
  79. 79.
    Sharma, K., Garg, V.K.: Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8438-2
  80. 80.
    Parthasarathi, K., Balamurugan, M., Prashija, K.V., Jayanthi, L., Basha, S.A.: Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. Int. J. Recycl. Org. Waste Agricult. 5, 65–86 (2016)Google Scholar
  81. 81.
    Garg, V.K., Gupta, R.: Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicol. Environ. Saf. 74, 19–24 (2011)Google Scholar
  82. 82.
    Khwairakpam, M., Bhargava, R.: Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour. Technol. 100, 5846–5852 (2009)Google Scholar
  83. 83.
    Garg, V.K., Yadav, Y.K., Sheoran, A., Chand, S., Kaushik, P.: Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist 26, 269–276 (2006)Google Scholar
  84. 84.
    Elvira, C., Sampedro, L., Benitez, E., Nogales, R.: Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot scale study. Bioresour. Technol. 63, 205–211 (1998)Google Scholar
  85. 85.
    Hogg, D., Eaviono, E., Caimi, V., Amlinger, F., Devliegher, W., Brinton, W., Antler, S.: Comparison of composts standards within the programme (WARP). Oxon (2002)Google Scholar
  86. 86.
    Jadia, C.D., Fulekar, M.H.: Vermicomposting of vegetable waste: A biophysicochemical process based on hydro-operating bioreactor. Afri. J. Biotechnol. 7, 3723–3730 (2008)Google Scholar
  87. 87.
    Datar, M.T., Rao, M.N., Reddy, S.: Vermicomposting-a technological option for Solid waste management. J. Solid Waste Technol. Manag. 24, 89–93 (1997)Google Scholar
  88. 88.
    Rynk, R.M., Kamp, V.D., Willson, G.G., Singley, M.E., Richard, T.L., Kolega, J.J., Gouin, F.R., Laliberty, J.L., Kay, D., Murphy, D.H., Hoitink, A.J., Brinton, W.F.: In: Rynk, R. (ed.) On-farm composting handbook, p. 186. NRAES-54 Natural Resource, Agriculture and Engineering Service (1992)Google Scholar
  89. 89.
    Muthukumaravel, K., Amsath, A., Sukumaran, M.: Vermicomposting of vegetable waste using cow dung. Eur. J. Chem. 5, 810–813 (2008)Google Scholar
  90. 90.
    Singh, N.B., Khare, A.K., Bhargava, D.S., Bhattacharya, S.: Effect of initial substrate pH on vermicomposting using Perionyx excavatus. Appl. Ecol. Environ. Res. 4, 85–97 (2005)Google Scholar
  91. 91.
    Lazcano, C., Gomez-Brandon, M., Dominguez, J.: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere. 72, 1013–1019 (2008)Google Scholar
  92. 92.
    Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the green market: the need for standards and quality assurance. J. Environ. Manag. 80, 58–65 (2003)Google Scholar
  93. 93.
    Hait, S., Tare, V.: Vermistabilization of primary sewage sludge. Bioresour. Technol. 102, 2812–2820 (2011)Google Scholar
  94. 94.
    Garg, P., Gupta, A., Satya, S.: Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour. Technol. 97, 391–395 (2006)Google Scholar
  95. 95.
    Karmegam, N., Daniel, T.: Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates. Environmentalist 29, 287–300 (2009)Google Scholar
  96. 96.
    Kaviraj, Sharma, S.: Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol. 90, 169–173 (2003)Google Scholar
  97. 97.
    Hayawin, Z.N., Khalil, H.P.S.A., Jawaid, M., Ibrahim, M.H., Astimar, A.A.: Exploring chemical analysis of vermicompost of various oil palm fibre wastes. Environmentalist 30, 273–278 (2010)Google Scholar
  98. 98.
    Garg, V.K., Kaushik, P.: Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresour. Technol. 96, 1063–1071 (2005)Google Scholar
  99. 99.
    Venkatesh, R.M., Eevera, T.: Mass reduction and recovery of nutrients through vermicomposting of fly ash. Appl. Ecol. Environ. Res. 6, 77–84 (2008)Google Scholar
  100. 100.
    Ravindran, B., Dinesh, S.L., John Kennedy, L., Sekaran, G.: Vermicomposting of solid waste generated from leather industries using Epigeic Earthworm Eisenia foetida. Appl. Biochem. Biotechnol. 151, 480–488 (2008)Google Scholar
  101. 101.
    Senesi, N.: Composted materials as organic fertilizers. Sci. Total Environ. 81, 521–524 (1989)Google Scholar
  102. 102.
    Bhat, S.A., Singh, J., Vig, A.P.: Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J. Anal. Sci. Technol. 8, 2 (2017)Google Scholar
  103. 103.
    Ruz-Jerez, B.E., Ball, P.R., Tillman, R.W.: Laboratory assessment of nutrient release from a pasture soil receiving grass or clover residues, in the presence or absence of Lumbricus rubellus or Eisenia fetida. Soil Biol. Biochem. 24, 1529–1534 (1992)Google Scholar
  104. 104.
    Ozawa, T., Risal, C.P., Yanagimoto, R.: Increase in the nitrogen content of soil by the introduction of earthworms into soil. Soil Sci. Plant Nutri. 51, 917–920 (2005)Google Scholar
  105. 105.
    Cynthia, J.M., Rajeshkumar, K.T.: A study on sustainable utility of sugar mill effulent to vermicompost. Adv. Appl. Sci. Res. 3, 1092–1097 (2012)Google Scholar
  106. 106.
    Suthar, S.: Vermicomposting potential of perionyx sansibaricus (Perrier) in different waste materials. Bioresour. Technol. 98, 1231–1237 (2007)Google Scholar
  107. 107.
    Viel, M., Sayag, D., Andre, L.: Optimization of agricultural industrial waste management through in-vessel composting. In: de Bertoldi, M.. (ed.), Compost: production, quality and use. Elsevier Applied Science, Essex, pp. 230–237 (1987)Google Scholar
  108. 108.
    Plaza, C., Nogales, R., Senesi, N., Benitez, E., Polo, A.: Organic matter humification by vermicomposting of cattle manure alone and mixed with two phase olive pomace. Bioresour. Technol. 99, 5085–5089 (2008)Google Scholar
  109. 109.
    Yadav, A., Garg, V.K.: Vermicomposting—an effective tool for the management of invasive weed Parthenium hysterophorus. Bioresour. Technol. 102, 5891–5895 (2011)Google Scholar
  110. 110.
    Benitez, E., Nogales, R., Elvira, C., Masciandaro, G., Ceccanti, B.: Enzyme activities as indicators of the stabilization of sewage sludge composting with Eisenia fetida. Bioresour. Technol. 67, 297–303 (1999)Google Scholar
  111. 111.
    Kumar, R., Verma, D., Singh, B.L., Kumar, U., Shweta: Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 101, 6707–6711 (2010)Google Scholar
  112. 112.
    Hesse, P.R.: A textbook of soil chemical analysis. Chemical Publishing Co., Inc, New York (1971)Google Scholar
  113. 113.
    Hameeda, B., Rupela, O.P., Reddy, G., Satyavani, K.: Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biol. Fertil. Soils. 43, 221–227 (2006)Google Scholar
  114. 114.
    Pramanik, P., Ghosh, G.K., Ghosal, P.K., Banik, P.: Changes in organic—C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under limiting and microbial inoculants. Bioresour. Technol. 98, 2485–2494 (2007)Google Scholar
  115. 115.
    Suthar, S., Singh, S.: Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci. Total Environ. 394, 237–243 (2008)Google Scholar
  116. 116.
    Yadav, A., Garg, V.K.: Feasibility of Nutrient recovery from industrial sludge by vermicomposting technology. J. Hazard. Mater. 168, 262–268 (2009)Google Scholar
  117. 117.
    Vinotha, S.P., Parthasarathi, K., Ranganathan, L.S.: Enhanced phosphatases activity in earthworm casts is more of microbial origin. Current Sci. 79, 1158–1159 (2000)Google Scholar
  118. 118.
    Ravindran, B., Sekaran, G.: Bacterial composting of animal fleshing generated from tannery industries. Waste Manage. 30, 2622–2630 (2010)Google Scholar
  119. 119.
    Orozco, F.H., Cegarra, J., Trujillo, L.M., Roig, A.: Vermicomposting of coffee pulp using the earthworm Eisenia foetida: effects on C and N contents and the availability of nutrients. Biol. Fert. Soils. 22, 162–166 (1996)Google Scholar
  120. 120.
    Brady, N.C., Weil, R.R.: In: The nature and properties of soils 13th edn. Pearson Education, Singapore. p. 960 (2002)Google Scholar
  121. 121.
    Kızılkaya, R.: The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil. Ecol. Eng. 25, 322–331 (2005)Google Scholar
  122. 122.
    Alloway, B.J., Ayers, D.C.: Chemical principles of environmental pollution. Chapman & Hall, Alden Press, Oxford (1994)Google Scholar
  123. 123.
    Saxena, M., Chauhan, A., Ashokan, P.: Fly ash vermicomposting from non-ecofriendly organic wastes. Pollut. Res. 17, 5–11 (1998)Google Scholar
  124. 124.
    Jain, K., Singh, J., Chauhan, L.K., Murthy, R.C., Gupta, S.K.: Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting. Ecotoxicol. Environ. Safe. 59, 89–94 (2004)Google Scholar
  125. 125.
    Gupta, S.K., Tewari, A., Srivastava, R., Murthy, R.C., Chandra, S.: Potential of Eisenia fetida for sustainable and effective vermicomposting of fly ash. Water Air Soil Pollut. 163, 293–302 (2005)Google Scholar
  126. 126.
    Shasmansouri, M.R., Pourmoghadas, H., Parvaresh, A.R., Alidadi, H.: Heavy metals bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the sewage sludge vermicomposting. Iranian J. Environ. Health Sci. Eng. 2, 28–32 (2005)Google Scholar
  127. 127.
    Vermeulen, F., Van den Brink, N.W., DHave, H., Mubiana, V.K., Blust, R., Bervoets, L., De Coen, W: Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice. Environ. Pollut. 157, 3098–3105 (2009)Google Scholar
  128. 128.
    Li, L., Xu, Z., Wu, J., Tian, G.: Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour. Technol. 101, 3430–3436 (2010)Google Scholar
  129. 129.
    Soobhany, N., Mohee, R., Garg, V.K.: Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Manage. 39, 130–145 (2015)Google Scholar
  130. 130.
    Soobhany, N., Mohee, R., Garg, V.K.: Experimental process monitoring and potential of Eudrilus eugeniae in the vermicomposting of organic solid waste in Mauritius. Ecol. Eng. 84, 149–158 (2015)Google Scholar
  131. 131.
    Singh, J., Kaur, A.: Vermidegradation for faster remediation of chemical sludge and spent carbon generated by soft drink industries. J. Environ. Sci. Sustain. 1, 13–20 (2013)Google Scholar
  132. 132.
    Fischer, E., Molnar, L.: Environmental aspects of the chloragogenous tissue of earthworm. Soil Biol. Biochem. 24, 1723–1727 (1992)Google Scholar
  133. 133.
    Gupta, R., Mutiyar, P.K., Rawat, N.K., Saini, M.S., Garg, V.K.: Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresour. Technol. 98, 2605–2610 (2007)Google Scholar
  134. 134.
    Ravindran, B., Contreras-Ramos, S.M., Wong, J.W.C., Selvam, A., Sekaran, G.: Nutrient and enzymatic changes of hydrolysed tannery solid waste treated with epigeic earthworm Eudrilus eugeniae and phytotoxicity assessment on selected commercial crops. Environ. Sci. Pollut. Res. 21, 641–651 (2014)Google Scholar
  135. 135.
    Deolalikar, A.V., Mitra, A., Bhattacharyee, S., Chakraborty, S.: Effect of vermicomposting process on metal content of paper mill solid waste. J. Environ. Sci. Eng. 47, 81–84 (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sartaj Ahmad Bhat
    • 1
  • Jaswinder Singh
    • 2
  • Adarsh Pal Vig
    • 1
    Email author
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia
  2. 2.P.G. Department of ZoologyKhalsa CollegeAmritsarIndia

Personalised recommendations