Skip to main content

Advertisement

Log in

Effect of Applying Organic Amendments on the Pyrolytic Behavior of a Poplar Energy Crop

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Thermal conversion of biomass derived from energy crops is one alternative for the production of energy. In this work, thermogravimetric analysis of poplar biomass was carried out and both the kinetic parameters (activation energy and frequency factor) and characteristic indexes were determined. Four poplar clones (UNAL, I-214, AF-2 and AF-8) under no fertilization (CONTROL) or under fertilization with either dehydrated composted sewage sludge (BIOSOLIDS) or sludge from dairy wastewater treatment (MUD) were used in this work. Five weight loss stages were identified in the DTG pyrolysis curves: moisture loss, active pyrolysis (two phases), passive pyrolysis and a high-rank pyrolysis phase. Among them, the second pyrolysis active phase was the most representative one. For this stage, BIOSOLIDS-UNAL poplars biomass was the one that achieved the highest weight loss values. The characteristic parameters and indexes (especially P and Pi indexes) also pointed to UNAL poplars under BIOSOLIDS fertilization as the most favourable for pyrolytic thermal conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CONTROL:

Name of the treatment in which no fertilizer was applied to soil.

BIOSOLIDS:

Name of the treatment in which dehydrated composted sewage sludge was applied to soil.

MUD:

Name of the treatment in which sludge derived from dairy wastewater treatment was applied to soil.

UNAL:

Clone with the same name (UNAL) of the Populus x interamericana species employed in this study

I-214:

Clone with the same name (I-214) of the Populus x interamericana species employed in this study

AF-2:

Clone with the same name (AF-2) of the Populus x euramericana species employed in this study

AF-8:

Clone with the same name (AF-8) of the Populus x euramericana species employed in this study

References

  1. Shafiee, S., Topal, E.: An econometrics view of worldwide fossil fuel consumption and the role of US. Energy Policy. 36(2), 775–786 (2008). doi:10.1016/j.enpol.2007.11.002

    Article  Google Scholar 

  2. Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy. 37(1), 181–189 (2009). doi:10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  3. Asif, M., Muneer, T.: Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11(7), 1388–1413 (2007). doi:10.1016/j.rser.2005.12.004

    Article  Google Scholar 

  4. Hernanz, J.L., Sánchez-Girón, V., Navarrete, L., Sánchez, M.J.: Long-term (1983–2012) assessment of three tillage systems on the energy use efficiency, crop production and seeding emergence in a rain fed cereal monoculture in semiarid conditions in central Spain. Field Crops Res. 166, 26–37 (2014). doi:10.1016/j.fcr.2014.06.013

  5. Rathore, N.S., Panwar, N.L.: Renewable Energy Sources for Sustainable Development. vol. Book, Whole. New India Publishing Agency, (2007)

  6. Chinnici, G., D’Amico, M., Rizzo, M., Pecorino, B.: Analysis of biomass availability for energy use in Sicily. Renew. Sustain. Energy Rev. 52, 1025–1030 (2015). doi:10.1016/j.rser.2015.07.174

    Article  Google Scholar 

  7. Roberts, J.J., Cassula, A.M., Osvaldo Prado, P., Dias, R.A., Balestieri, J.A.P.: Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 41, 568–583 (2015). doi:10.1016/j.rser.2014.08.066

    Article  Google Scholar 

  8. Dillen, S.Y., Djomo, S.N., Al Afas, N., Vanbeveren, S., Ceulemans, R.: Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass Bioenergy. 56(0), 157–165 (2013). doi:10.1016/j.biombioe.2013.04.019

    Article  Google Scholar 

  9. Afas, N.A., Marron, N., Van Dongen, S., Laureysens, I., Ceulemans, R.: Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). For. Ecol. Manag. 255(5–6), 1883–1891 (2008). doi:10.1016/j.foreco.2007.12.010

    Article  Google Scholar 

  10. Laureysens, I., Bogaert, J., Blust, R., Ceulemans, R.: Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. For. Ecol. Manag. 187(2–3), 295–309 (2004)

    Article  Google Scholar 

  11. Ceulemans, R., Deraedt, W.: Production physiology and growth potential of poplars under short-rotation forestry culture. For. Ecol. Manag. 121(1–2), 9–23 (1999). doi:10.1016/S0378-1127(98)00564-7

    Article  Google Scholar 

  12. Testa, R., Di Trapani, A.M., Foderà, M., Sgroi, F., Tudisca, S: Economic evaluation of introduction of poplar as biomass crop in Italy. Renew. Sustain. Energy Rev. 38, 775–780 (2014)

    Article  Google Scholar 

  13. Carmona, R., Nuñez, T., Alonso, M.F.: Biomass yield and quality of an energy dedicated crop of poplar (Populus spp.) clones in the Mediterranean zone of Chile. Biomass Bioenergy 74, 96–102 (2015). doi:10.1016/j.biombioe.2015.01.004

    Article  Google Scholar 

  14. Bartolomé, C., Gil, A.: Ash deposition and fouling tendency of two energy crops (cynara and poplar) and a forest residue (pine chips) co-fired with coal in a pulverized fuel pilot plant. Energy Fuels. 27(10), 5878–5889 (2013). doi:10.1021/ef401420j

    Article  Google Scholar 

  15. Richardson, J., Isebrands, J.G.: Multiple social and environmental benefits of poplars and willows—Mini Review. CAB Rev 8, 1–3(2013). doi:10.1079/PAVSNNR20138059

    Article  Google Scholar 

  16. Wang, Z., MacFarlane, D.W.: Evaluating the biomass production of coppiced willow and poplar clones in Michigan, USA, over multiple rotations and different growing conditions. Int Conference on Lignocellulosic ethanol 46(0), 380–388 (2012). doi:10.1016/j.biombioe.2012.08.003

  17. Fang, S., Xu, X., Yu, X., Li, Z.: Poplar in wetland agroforestry: A case study of ecological benefits, site productivity, and economics. Wetlands Ecol. Manag. 13(1), 93–104 (2005). doi:10.1007/s11273-003-3104-5

    Article  Google Scholar 

  18. Mantineo, M., D’Agosta, G.M., Copani, V., Patanè, C., Cosentino, S.L.: Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Res. 114(2), 204–213 (2009). doi:10.1016/j.fcr.2009.07.020

    Article  Google Scholar 

  19. Rancane, S., Karklins, A., Lazdina, D.: Fertilisation effect on biomass formation of perennial grass used as energy crop. In: Research for Rural Development 2014, pp. 61–68

  20. Jannoura, R., Joergensen, R.G., Bruns, C.: Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur J Agronom 52, Part B(0), 259–270 (2014). doi:10.1016/j.eja.2013.09.001

    Article  Google Scholar 

  21. Kaltschmitt, M.: Biomass for energy in Germany status, perspectives and lessons learned. JSEE (Special Issue), 1–10 (2011).

  22. Lafleur, B., Thiffault, E., Paré, D., Camiré, C., Bernier-Cardou, M., Masse, S.: Effects of hog manure application on the nutrition and growth of hybrid poplar (Populus spp.) and on soil solution chemistry in short-rotation woody crops. Agric. Ecosyst. Environ. 155(0), 95–104 (2012). doi:10.1016/j.agee.2012.04.002

    Article  Google Scholar 

  23. Poletto, M., Dettenborn, J., Pistor, V., Zeni, M., Zattera, A.J.: Materials produced from plant biomass. Part I: Evaluation of thermal stability and pyrolysis of wood. Mater. Res. 13(3), 375–379 (2010).

    Article  Google Scholar 

  24. Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6(25), 4497–4559 (2015). doi:10.1039/C5PY00263J

    Article  Google Scholar 

  25. Han, K.J., Moon, Y., Day, D.F., Pitman, W.D.: Feedstock analysis sensitivity for estimating ethanol production potential in switchgrass and energycane biomass. Int. J. Energy Res. 40(2), 248–256 (2016). doi:10.1002/er.3462

    Article  Google Scholar 

  26. Lee, J.: Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56(1), 1–24 (1997). doi:10.1016/S0168-1656(97)00073-4

    Article  MathSciNet  Google Scholar 

  27. Kang, Q., Appels, L., Tan, T., Dewil, R.: Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci. World J. 2014, 13 (2014). doi:10.1155/2014/298153

    Google Scholar 

  28. Sharma, A., Pareek, V., Zhang, D.: Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 50, 1081–1096 (2015). doi:10.1016/j.rser.2015.04.193

    Article  Google Scholar 

  29. Kan, T., Strezov, V., Evans, T.J.: Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016). doi:10.1016/j.rser.2015.12.185

    Article  Google Scholar 

  30. Şerbănescu, C.: Kinetic analysis of cellulose pyrolysis: a short review. Chem. Pap. 68(7), 847–860 (2014). doi:10.2478/s11696-013-0529-z

    Google Scholar 

  31. Lu, Q., Li, W.-Z., Zhu, X.-F.: Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 50(5), 1376–1383 (2009). doi:10.1016/j.enconman.2009.01.001

    Article  Google Scholar 

  32. McKendry, P.: Energy production from biomass (part 2): conversion technologies. Bioresour. Technol. 83(1), 47–54 (2002). doi:10.1016/S0960-8524(01)00119-5

    Article  Google Scholar 

  33. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012). doi:10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  34. Xiong, Q., Aramideh, S., Kong, S.-C.: Assessment of devolatilization schemes in predicting product yields of biomass fast pyrolysis. Environ. Prog. Sustain. Energy. 33(3), 756–761 (2014). doi:10.1002/ep.11922

    Article  Google Scholar 

  35. Aramideh, S., Xiong, Q., Kong, S.-C., Brown, R.C.: Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel 156, 234–242 (2015). doi:10.1016/j.fuel.2015.04.038

    Article  Google Scholar 

  36. Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F.: Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrolysis. 77(1), 22–27 (2006). doi:10.1016/j.jaap.2005.12.010

    Article  Google Scholar 

  37. Liu, Q., Zhong, Z., Wang, S., Luo, Z.: Interactions of biomass components during pyrolysis: A TG-FTIR study. J. Anal. Appl. Pyrolysis. 90(2), 213–218 (2011). doi:10.1016/j.jaap.2010.12.009

    Article  Google Scholar 

  38. White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91(1), 1–33 (2011). doi:10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  39. Guo, F., Dong, Y., Lv, Z., Fan, P., Yang, S., Dong, L.: Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed. Energy Convers. Manag. 93(0), 367–376 (2015). doi:10.1016/j.enconman.2015.01.042

    Article  Google Scholar 

  40. de Luis, I.B.E.: Aplicación al suelo de lodos de depuradora de aguas residuales: seguimiento de la actividad microbiana. (2003)

  41. Aenor: UNE-CEN/TS 14779:2007 EX - Solid biofuels—Sampling—Methods for preparing sampling plans and sampling certificates -. In., vol. Laws/Statutes. (2007)

  42. Legaz, F., Serna, M.D., Ferrer, P., Cebolla, V., Primo-Millo, E.: Análisis de hojas, suelos y aguas para el diagnóstico nutricional de plantación de cítricos. Procedimiento de toma de muestras. vol. Book, WholeValencia, España. (1995)

  43. West, P.W.: Tree and Forest Measurement. Biomedical and Life Sciences, vol. Book, Whole. Springer, Berlín (2009)

    Google Scholar 

  44. Calvo, L.F., Otero, M., Jenkins, B.M., Morán, A., García, A.I.: Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process. Technol. 85(4), 279–291 (2004). doi:10.1016/S0378-3820(03)00202-9

    Article  Google Scholar 

  45. Paniagua, S., Escudero, L., Escapa, C., Coimbra, R.N., Otero, M., Calvo, L.F.: Effect of waste organic amendments on Populus sp biomass production and thermal characteristics. Renewable Energy 94, 166–174 (2016). doi:10.1016/j.renene.2016.03.019

  46. Nie, Q., Sun, S., Li, Z.: Thermogravimetric analysis on the combustion characteristics of brown coal blends. J. Combust. Sci. Technol. 7(1), 72–76 (2001)

    Google Scholar 

  47. Li, X.G., Ma, B.G., Xu, L., Hu, Z.W., Wang, X.G: Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim. Acta. 441(1), 79–83 (2006). doi:10.1016/j.tca.2005.11.044

    Article  Google Scholar 

  48. Junlin, X., Feng, H.: Catalyzed combustion study of study of anthracite in cement kiln. J. Chin. Ceram. Soc. 26(6), 792–795 (1998)

    Google Scholar 

  49. Wang, S., Jiang, X.M., Han, X.X., Liu, J.G.: Combustion characteristics of seaweed biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels. 23(10), 5173–5178 (2009)

    Article  Google Scholar 

  50. Seo, D.K., Park, S.S., Hwang, J., Yu, T.-U.: Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis. 89(1), 66–73 (2010). doi:10.1016/j.jaap.2010.05.008

    Article  Google Scholar 

  51. Gil, M.V., Casal, D., Pevida, C., Pis, J.J., Rubiera, F.: Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour. Technol. 101(14), 5601–5608 (2010). doi:10.1016/j.biortech.2010.02.008

    Article  Google Scholar 

  52. Chen, Z., Zhu, Q., Wang, X., Xiao, B., Liu, S.: Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Convers Manag. 105, 251–259 (2015). doi:10.1016/j.enconman.2015.07.077

    Article  Google Scholar 

  53. Park, Y.-H., Kim, J., Kim, S.-S., Park, Y.-K.: Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresour. Technol. 100(1), 400–405 (2009). doi:10.1016/j.biortech.2008.06.040

    Article  Google Scholar 

  54. Blasi, C.D., Branca, C., D’Errico, G.: Degradation characteristics of straw and washed straw. Thermochim. Acta. 364(1–2), 133–142 (2000). doi:10.1016/S0040-6031(00)00634-1

    Article  Google Scholar 

  55. Shao, D., Hutchinson, E.J., Heidbrink, J., Pan, W.-P., Chou, C.-L.: Behavior of sulfur during coal pyrolysis. J. Anal. Appl. Pyrolysis. 30(1), 91–100 (1994). doi:10.1016/0165-2370(94)00807-8

    Article  Google Scholar 

  56. Monti, A.: Switchgrass: a valuable biomass Crop for Energy. Springer, London (2012)

  57. Sheng, C., Azevedo, J.L.T: Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 28(5), 499–507 (2005). doi:10.1016/j.biombioe.2004.11.008

    Article  Google Scholar 

  58. Paniagua, S., Otero, M., Coimbra, R., Escapa, C., García, A., Calvo, L.: Simultaneous thermogravimetric and mass spectrometric monitoring of the pyrolysis, gasification and combustion of rice straw. J. Therm. Anal. Calorim. 121(2), 603–611 (2015). doi:10.1007/s10973-015-4632-y

    Article  Google Scholar 

  59. Ghaly, A.E., Ergüdenler, A., Al Taweel, A.M.: Determination of the kinetic parameters of oat straw using thermogravimetric analysis. Biomass Bioenergy. 5(6), 457–465 (1993). doi:10.1016/0961-9534(93)90041-2

    Article  Google Scholar 

  60. Raveendran, K., Ganesh, A.: Heating value of biomass and biomass pyrolysis products. Fuel 75(15), 1715–1720 (1996). doi:10.1016/S0016-2361(96)00158-5

    Article  Google Scholar 

  61. Coimbra, R.N., Paniagua, S., Escapa, C., Calvo, L.F., Otero, M.: Thermogravimetric analysis of the co-pyrolysis of a bituminous coal and pulp mill sludge. J. Therm. Anal. Calorim. 122(3), 1385–1394 (2015). doi:10.1007/s10973-015-4834-3

    Article  Google Scholar 

  62. Fortier, J., Gagnon, D., Truax, B., Lambert, F.: Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenergy. 34(7), 1028–1040 (2010). doi:10.1016/j.biombioe.2010.02.011

    Article  Google Scholar 

  63. Gašparovič, L., Koreňová, Z., Jelemenský, Ľ.: Kinetic study of wood chips decomposition by TGA. Chem. Pap. 64(2), 174–181 (2010). doi:10.2478/s11696-009-0109-4

    Google Scholar 

  64. Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy 97(0), 491–497 (2012). doi:10.1016/j.apenergy.2011.12.056

    Article  Google Scholar 

  65. Gu, X., Ma, X., Li, L., Liu, C., Cheng, K., Li, Z.: Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J. Anal. Appl. Pyrolysis. 102(0), 16–23 (2013). doi:10.1016/j.jaap.2013.04.009

    Article  Google Scholar 

  66. Wang, W.-L., Ren, X.-Y., Che, Y.-Z., Chang, J.-M., Gou, J.-S.: Kinetics and FTIR characteristics of the pyrolysis process of poplar wood. For. Sci. Pract. 15(1), 70–75 (2013). doi:10.1007/s11632-013-0112-2

    Google Scholar 

  67. Gu, X., Liu, C., Jiang, X., Ma, X., Li, L., Cheng, K., Li, Z.: Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J. Anal. Appl. Pyrolysis. 106(0), 177–186 (2014). doi:10.1016/j.jaap.2014.01.018

    Article  Google Scholar 

  68. Strezov, V., Moghtaderi, B., Lucas, J.A.: Thermal study of decomposition of selected biomass samples. J. Therm. Anal. Calorim. 72(3), 1041–1048 (2003). doi:10.1023/A:1025003306775

    Article  Google Scholar 

  69. Sharma, A., Rao, T.R.: Kinetics of pyrolysis of rice husk. Bioresour. Technol. 67(1), 53–59 (1999). doi:10.1016/S0960-8524(99)00073-5

    Article  Google Scholar 

  70. Sonobe, T., Worasuwannarak, N.: Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 87(3), 414–421 (2008). doi:10.1016/j.fuel.2007.05.004

    Article  Google Scholar 

  71. Wang, C., Wang, F., Yang, Q., Liang, R.: Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy. 33(1), 50–56 (2009). doi:10.1016/j.biombioe.2008.04.013

    Article  Google Scholar 

  72. Jiříček, I., Rudasová, P., Žemlová, T.: A thermogravimetric study of the behaviour of biomass blends during combustion. Acta Polytech. 52(3) (2012).

Download references

Acknowledgements

Authors would like to thank funding given by the Junta de Castilla y León (Project LE129A11). Also, Sergio Paniagua and Carla Escapa are grateful to the Spanish Ministry of Education, Culture and Sports for their PhD fellowships (FPU14/05846 and FPU12/03073, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Otero or L. F. Calvo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniagua, S., Escudero, L., Coimbra, R.N. et al. Effect of Applying Organic Amendments on the Pyrolytic Behavior of a Poplar Energy Crop. Waste Biomass Valor 9, 1435–1449 (2018). https://doi.org/10.1007/s12649-017-9885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9885-1

Keywords

Navigation