Skip to main content
Log in

Simulation and Experimental Study on Iron Impregnated Microbial Immobilization in Zeolite for Production of Biogas

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion is a simple decomposition process of organic matter by microorganisms while producing biogas in a low (absence) of oxygen environment. Anaerobic microorganisms are slow in growth and metabolism which require large volume of reactors in an industrial scale. Immobilization of anaerobic microbia on solid media such as zeolites can increase and maintain its population in the reactor and hence may speed up the decomposition process. The addition of essential micronutrients such as Fe2+ into the zeolite as microbial support may further increase the affinity of microbial film to attach and grow on the zeolite surface. This study aimed to evaluate the effect of Fe-loading into zeolite packing on an anaerobic digestion system for biogas production using stillage as the substrate. During experiment, 0.033 mg Fe2+ was loaded into each gram of zeolite rings by wet impregnation method. Then, the rings were put inside batch anaerobic reactors filled with stillage in various organic contents represented by soluble Chemical Oxygen Demand (sCOD). The observation of sCOD reduction, Volatile Fatty Acid (VFA) concentration, and biogas production were conducted for 28 days of batch mode anaerobic processes. It is shown that the Fe-loaded support has significant effects on enhancing the organic digestion process in the reactors with high concentration of stillage. On the other hand for lower concentration reactors, the iron impregnated media have similar effect on the digestion process with the media without impregntion. A mathematical model was developed for simulation of the methane generation from sCOD with VFA as the intermediate product. The simulation supports the evidence that the presence of Fe2+ in the immobilization media had a noticeable impact on accelerating volatile fatty acids conversion into methane and preventing acidic condition in the reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Monnet, F.: An introduction to anaerobic digestion of organic wastes. Remade Scotland. http://biogasmax.co.uk/media/introanaerobicdigestion__073323000_1011_24042007.pdf (2003). Accessed 1 July 2016

  2. Chavan, M.N., Kulkarni, M. V., Zope, V.P., Mahulikar, P.P.: Microbial degradation of melanoidins in distillery spent wash by an indigenous isolate, Indian. J. Biotechnol. 5, 416–421 (2006)

    Google Scholar 

  3. Pant, D., Adholeya, A.: Biological approaches for treatment of distillery wastewater: a review. Bioresour. Technol. 98(12), 2321–2334 (2007) doi:10.1016/j.biortech.2006.09.027

    Article  Google Scholar 

  4. Prakash, N.B., Sockan, V., Raju, V.S.: Anaerobic digestion of distillery spent wash. ARPN J. Sci. Technol. 4(3), 134–140 (2014)

  5. Beltrán, F.J., García-Araya, J.F., Alvarez, P.M.: Wine distillery wastewater degradation. 2. Improvement of aerobic biodegradation by means of an integrated chemical (Ozone)-biological treatment. J. Agric. Food Chem. 47, 3919–3924 (1999)

    Article  Google Scholar 

  6. Gopakakrishnan K., van Leeuwen J.H., Sustainable Bioenergy and Bioproducts: Value Added Engineering Applications, Springer, Ames (2011)

    Google Scholar 

  7. Tejasen, S., Taruyanon, K.: Modelling of Two-stage anaerobic treating wastewater from a molasses-based ethanol distillery with the IWA anaerobic digestion model no.1. Eng. J. 14(1), 25–36 (2010). doi:10.4186/ej.2010.14.1.25

    Article  Google Scholar 

  8. Bitton G., Wastewater Microbiology, 3rd edn. Wiley, Hoboken (2005)

    Book  Google Scholar 

  9. Shuler, M.L., Kargi, F.: Bioprocess Engineering, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (2002)

    Google Scholar 

  10. Borja, R., Weiland, P., Travieso, L., Martin, A.: Kinetics of anaerobic digestion of cow manure with biomass immobilized on zeolite. Chem. Eng. J. 54, B9–B14 (1994)

    Google Scholar 

  11. Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., de la la Rubia MA.: Application of natural zeolites in anaerobic digestion processes: a review. Appl. Clay Sci. 58 (2012) 125–133. doi:10.1016/j.clay.2012.01.013

  12. Anderson, K., Sallis, P., Uyanik S.: Anaerobic treatment processes. In: Mara, D., Horan, N. (eds.) Handbook of Water and Wastewater Microbiology, pp. 391–426. Academic Press, London (2003)

  13. Espinosa, A., Rosas, L., Ilangovan, K., Noyola, A.: Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Sci. Technol. 32, 121–129 (1995). doi:10.1016/0273-1223(96)00146-1

    Google Scholar 

  14. Karlsson, A., Einarsson, P., Schnürer, A., Sundberg, C., Ejlertsson, J., Svensson, B.H.: Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J. Biosci. Bioeng. 114, 446–452 (2012). doi:10.1016/j.jbiosc.2012.05.010

    Article  Google Scholar 

  15. Milán, Z., Villa, P., Sánchez, E., Montalvo, S., Borja, R., Ilangovan, K., Briones, R.: Effect of natural and modified zeolite addition on anaerobic digestion of piggery waste. Water Sci. Technol. 48, 263–269 (2003)

    Google Scholar 

  16. Moestedt, J., Påledal, S., Schnürer, A., Nordell, E.: Biogas production from thin stillage on an industrial scale—experience and optimisation, Energies 6, 5642–5655 (2013). doi:10.3390/en6115642

    Article  Google Scholar 

  17. Gerardi, M.H.: The Microbiology of an Anaerobic Digesters. Wiley, New Jersey (2003)

    Book  Google Scholar 

  18. Jiang, B.: The Effect of Trace Elements on the Metabolism of Methanogenic Consortia, Wageningen University, Wageningen (2006)

    Google Scholar 

  19. Al Seadi, T., Dominik, R., Prassl, H., Köttner, M.: Biogas Handbook, University of Southern Denmark Esbjerg, Esbjerg (2008)

    Google Scholar 

  20. Takashima, M., Shimada, K., Speece, R.E.: Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ. Res. 83, 339–346 (2011). doi:10.2175/106143010X12780288628895

    Article  Google Scholar 

  21. Irvan, M.: The Effect of Fe concentration on the quality and quantity of biogas produced from fermentation of palm oil mill effluent. Int. J. Sci. Eng. 3, 35–38 (2012)

    Google Scholar 

  22. Patidar, S.K., Tare, V.: Effect of nutrients on biomass activity in degradation of sulfate laden organics. Process Biochem. 41, 489–495 (2006). doi:10.1016/j.procbio.2005.07.001

    Article  Google Scholar 

  23. Zitomer, D.H., Johnson, C.C., Speece, R.E.: Metal stimulation and municipal digester thermophilic/mesophilic activity. J. Environ. Eng. 134, 42–47 (2008). doi:10.1061/(ASCE)0733-9372(2008)134:1(42)

    Article  Google Scholar 

  24. Echiegu, E.A., Ghaly, A.E.: Kinetic modelling of continuous-mix anaerobic reactors operating under diurnally cyclic temperature environment. Am. J. Biochem. Biotechnol. 10, 130–142 (2014)

    Article  Google Scholar 

  25. Nugroho, A., Yustendi, K., Setiadi, T.: The effect of COD concentration on organic acids production from cassava ethanol stillage. Proceedings 14th Regional Symposium on Chemical Engineering (RSCE) 2007. http://ppprodtk.fti.itb.ac.id/tjandra/wp-content/uploads/2010/04/Publikasi-No-92.pdf (2007). Accessed 3 Mar 2016

  26. Satyawali, Y., Balakrishnan, M.: Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review., J. Environ. Manag. 86 (2008) 481–497. doi:10.1016/j.jenvman.2006.12.024

  27. Espinosa, A., Rosas, L., Ilangovan, K., Noyola, A.: Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Sci. Technol. 32, 121–129 (1995)

    Google Scholar 

  28. Zouari, N., Ellouz, R.: Microbial consortia for the aerobic degradation of aromatic compounds in olive oil mill effluent. J. Ind. Microbiol. 16, 155–162 (1996). doi:10.1007/BF01569998

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by USAID PEER Science under Prime Agreement Number AID-OAA-A-11-00012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Wahyu Purnomo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purnomo, C.W., Mellyanawaty, M. & Budhijanto, W. Simulation and Experimental Study on Iron Impregnated Microbial Immobilization in Zeolite for Production of Biogas. Waste Biomass Valor 8, 2413–2421 (2017). https://doi.org/10.1007/s12649-017-9879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9879-z

Keywords

Navigation