Mix-design Parameters and Real-life Considerations in the Pursuit of Lower Environmental Impact Inorganic Polymers

Abstract

The environmental impact of inorganic polymer mortars from non-ferrous slag was assessed and compared to ordinary Portland cement (OPC) mortar based on a load bearing capacity of 10 MN of bricks of 0.1 m high. Two strategies to minimize the environmental impact of inorganic polymers were pursued. Activating solutions with a lower alkali content (H2O/Na2O = 16, 24, 32, 40, 48; constant SiO2/Na2O = 1.6) were investigated while keeping the water/slag mass ratio of the inorganic polymer mortar mix constant. Another synthesis route considered the complete replacement of the activating solution by maize ashes. These were blended with the slag in different ash/slag mass ratios (0.2, 0.4, 0.6) before adding water, producing a so-called “one-part” inorganic polymer. A sensitivity analysis showed that the effect of compressive strength and transport distance is extensive. Because of this considerable transport distance dependence, several cities in Flanders were selected to perform a detailed LCA study. The optimal scores of the environmental impact were observed for Mol, the location of the sand supplier, and accounted for 23% with respect to OPC for the samples with the activating solution with a ratio of H2O/Na2O = 24 and 17% for an ash/slag ratio of 0.2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A., Corder, G.D.: Cost and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 19, 1080–1090 (2011). doi:10.1016/j.jclepro.2011.02.010

    Article  Google Scholar 

  2. 2.

    Melado, A., Catalan, C., Bouzon, N., Borrachero, M.V., Monzo, J.M., Paya, J.: Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv. 4, 23846–23852 (2014). doi:10.1039/C4RA03375B

    Article  Google Scholar 

  3. 3.

    Davidovits, J.: Environmental implications of geopolymers, materials today. http://www.materialstoday.com/polymers-soft-materials/features/environmental-implications-of-geopolymers/ (2015). Accessed 20 Jan 2016

  4. 4.

    Habert, G., Ouellet-Plamondon, C.: Recent update on the environmental impact of geopolymers. RILEM Technical Letters. 1, 17–23 (2016). doi:10.21809/rilemtechlett.2016.6

    Article  Google Scholar 

  5. 5.

    Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., van Zelm, R.: ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level, Technical report Nederlands Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer (2013)

  6. 6.

    Heath, A., Paine, K., McManus, M.: Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 78, 75–83 (2014). doi:10.1016/j.jclepro.2014.04.046

    Article  Google Scholar 

  7. 7.

    Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin based geopolymers. Coll Surf A 292, 8–20 (2007). doi:10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  8. 8.

    Lizcano, M., Kim, H.S., Basu, S., Radovic, M.: Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J. Mater. Sci. 47, 2607–2616 (2012). doi:10.1007/s10853-011-6085-4

    Article  Google Scholar 

  9. 9.

    Provis, J.L., van Deventer, J.S.J.: Alkali Activated Materials: State-of-the-Art Report RILEM TC 224-AAM. Springer, New York (2014)

    Google Scholar 

  10. 10.

    MacKenzie, K.J.D., Welter, M.: Geopolymer (aluminosilicate) composites: synthesis, properties and applications. Ceram. Trans. 18, 445–470 (2014). doi:10.1533/9780857098825.3.445

    Google Scholar 

  11. 11.

    Machiels, L., Arnout, L., Jones, P.T., Blanpain, B., Pontikes, Y.: Inorganic polymer cement from Fe-silicate glasses: varying the activating solution to glass ratio. Waste Biomass Valor. 5, 411–428 (2014). doi:10.1007/s12649-014-9296-5

    Article  Google Scholar 

  12. 12.

    Kriskova, L., Machiels, L., Pontikes, Y.: Inorganic polymers from a plasma convertor slag: effect of activating solution on microstructure and properties. J. Sustain. Metall. 1, 240–251 (2015). doi:10.1007/s40831-015-0022-8

    Article  Google Scholar 

  13. 13.

    Tchakouté, H.K., Rüscher, C.H., Kong, S., Kamseu, E., Leonelli, C.: Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: a comparative study. Constr. Build. Mater. 114, 276–289 (2016). doi:10.1016/j.conbuildmat.2016.03.184

    Article  Google Scholar 

  14. 14.

    Moraes, J.C.B., Tashamima, M.M., Akasaki, J.L., Melges, J.L.P., Monzo, J., Borrachero, M.V., Soriano, L., Paya, J.: Increasing the sustainability of alkali-activated binders: the use of sugar cane straw ash (SCSA). Constr. Build. Mater. 124, 148–154 (2016). doi:10.1016/j.conbuildmat.2016.07.090

    Article  Google Scholar 

  15. 15.

    Esaifan, M., Khoury, H., Aldabsheh, I., Rahier, H., Hourani, M., Wastiels, J.: Hydrated lime/potassium carbonate as alkaline activating mixture to produce kaolinitic clay based inorganic polymer. Appl. Clay Sci. 126, 278–286 (2016). doi:10.1016/j.clay.2016.03.026

    Article  Google Scholar 

  16. 16.

    Gluth, G.J.G., Lehmann, C., Rübner, K., Kühne, H.C.: Geopolymerization of a silica residue from waste treatment of chlorosilane production. Mater. Struct. 46, 1291–1298 (2013). doi:10.1617/s11527-012-9972-5

    Article  Google Scholar 

  17. 17.

    van Riessen, A., Jamieson, E., Kealley, C.S., Hart, R.D., Williams, R.P.: Bayer-geopolymers: an exploration of synergy between the alumina and geopolymer industries. Cem. Concr. Compos. 41, 29–33 (2013). doi:10.1016/j.cemconcomp.2013.04.010

    Article  Google Scholar 

  18. 18.

    Peys, H., Rahier, Y.: Pontikes, potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl. Clay Sci. 88, 194–201 (2016). doi:10.1016/j.clay.2015.11.003

    Google Scholar 

  19. 19.

    Provis, J., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014). doi:10.1146/annurev-matsci-070813-113515

    Article  Google Scholar 

  20. 20.

    Onisei, S., Lesage, K., Blanpain, B., Pontikes, Y.: Early age microstructural transformations of an inorganic polymer made of fayalite slag. J. Am. Ceram. Soc. 98, 1–9 (2015). doi:10.1111/jace.13548

    Article  Google Scholar 

  21. 21.

    Dhir OBE, R.K., Brito, J., Mangabhai, R., Lye, C.Q.: Sustainable Construction Materials: Copper Slag. Woodhead Publishing, Duxford (2017)

    Google Scholar 

  22. 22.

    Walker, R.: Mass, weight, density or specific gravity of bulk materials. http://www.simetric.co.uk (2011). Accessed 21 Dec 2015

  23. 23.

    Ardente, F., Cellura, M.: Economic allocation in life cycle assessment: the state of the art and discussion of examples. J. Ind. Ecol. 16, 387–398 (2012). doi:10.1111/j.1530-9290.2011.00434.x

    Article  Google Scholar 

  24. 24.

    Buttiens, K., Leroy, J., Negro, P., Thomas, J., Edwards, K., De Lassat, Y.: The carbon cost of slag production in the blast furnace: a scientific approach. J. Sustain. Metall. 2, 62–72 (2016). doi:10.1007/s40831-016-0046-8

    Article  Google Scholar 

  25. 25.

    Thinkstep International AG.: GaBi 6 Software-System and Databases for Life Cycle Engineering. Leinfelden Echterdingen (2014)

  26. 26.

    Fawer, M., Life cycle inventories of the production of sodium silicates, Technical report of the Swiss Federal Laboratories for Materials Testing and Research, (1997)

  27. 27.

    Zah, R., Hischier, R., Life cycle inventories of detergents; EcoInvent report no.12, Technical report of the Swiss Centre for Life Cycle Inventories, (2007)

  28. 28.

    Aydogan, N.A., Benzer, H.: Comparison of the overall circuit performance in the cement industry: high compression milling vs. ball milling technology. Miner. Eng. 24, 211–215 (2011). doi:10.1016/j.mineng.2010.08.005

    Article  Google Scholar 

  29. 29.

    Madlool, N.A., Saidur, R., Hossain, M.S., Rahim, N.A.: A critical review on energy use and savings in the cement industries. Renew. Sust. Energy Rev. 15, 2042–2060 (2011). doi:10.1016/j.rser.2011.01.005

    Article  Google Scholar 

  30. 30.

    Hosten C., Fidan, B.: An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol. 221, 183–188 (2012). doi:10.1016/j.powtec.2011.12.065

    Article  Google Scholar 

  31. 31.

    Thannimalay, L., Yusoff, S., Zawawi, N.Z.: Life cycle assessment of sodium hydroxide. Aust. J. Basic Appl. Sci. 7, 421–431 (2013)

    Google Scholar 

Download references

Acknowledgements

A. P. is grateful to the Research Foundation - Flanders (FWO) for the PhD grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Peys.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peys, A., Arnout, L., Blanpain, B. et al. Mix-design Parameters and Real-life Considerations in the Pursuit of Lower Environmental Impact Inorganic Polymers. Waste Biomass Valor 9, 879–889 (2018). https://doi.org/10.1007/s12649-017-9877-1

Download citation

Keywords

  • Inorganic polymer
  • Geopolymer
  • Slag valorization
  • Biomass ash
  • Life Cycle Assessment