Skip to main content

Advertisement

Log in

Assessment of the Transesterification Stage of Biodiesel Production II: Optimisation of Process Variables Using a Box-Behnken Design

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Renewable energy policies, in tandem with favourable market conditions, have culminated in large increases in biodiesel use globally. With increasing volumes of biodiesel and a broader range of suitable feedstocks, including used oils, stabilisation is becoming ever more important. The quality of biodiesel depends on the feedstock, purity of the milled oils, the storage conditions and the transesterification process. In this study, process variables in transesterification were optimised using a Box-Behnken design. The results of linear and non-linear (quadratic) functions and interaction terms (catalyst-FFA (Free fatty acid), stirring-catalyst, FFA-stirring pairs) indicate complex relationships between the set of factors and biodiesel yield. At the 95% significance level, all the linear terms were statistically significant unlike the quadratic term in which only the catalyst was significant. Furthermore, the joint effects of the FFA*Catalyst and the Stir*Catalyst interaction terms were statistically significant whereas the interaction between stirring and FFA had no influence on the yield of biodiesel. The yield distributions for varying combinations of the factors show that the optimum factor combinations for a percentage yield greater than 98% is low (−1/0.5 g) FFA, low (−1/400 rpm) stirring rate and high catalyst amount (1/4 g). Overall, the multivariate model accounted for 86.4% of the total variance in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ajanovic, A.: Biofuels versus food production: does biofuels production increase food prices? Energy 36, 2070–2076 (2011). doi:10.1016/j.energy.2010.05.019

    Article  Google Scholar 

  2. Antolín, G., Tinaut, F.V., Briceño, Y., Castaño, V., Pérez, C., Ramírez, A.I.: Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83, 111–114 (2002). doi:10.1016/S0960-8524(01)00200-0

    Article  Google Scholar 

  3. Cavazzuti, M.: Optimization Methods: from Theory to Design—Scientific and Technological aspects in Mechanics. Springer, Berlin (2013). doi:10.1007/978-3-642-31187-1_2.

    Book  MATH  Google Scholar 

  4. Durrett, T.P., Benning, C., Ohlrogge, J.: Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54, 593–607 (2008). doi:10.1111/j.1365-313X.2008.03442.x

    Article  Google Scholar 

  5. Feuge, R.O., Gros, A.T.: Modification of vegetables oils. VII Alkali catalyzed interestification of peanut oil with ethanol. J. Am. Oil Chem. Soc. 26(3), 97–102 (1949)

    Article  Google Scholar 

  6. Freedman, B., Pyrde, E.H., Mounts, T.L.: Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, 1638–1643 (1984)

    Article  Google Scholar 

  7. Gui, M.M., Lee, K.T., Bhatia, S.: Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33, 1646–1653 (2008). doi:10.1016/j.energy.2008.06.002

    Article  Google Scholar 

  8. Joshi, H., Toler, J., Moser, B.R., Walker, T.: Biodiesel from canola oil using a 1:1 molar mixture of methanol and ethanol. Eur. J. Lipid Sci. Technol. 111, 464–473 (2009). doi:10.1002/ejlt.200800071

    Article  Google Scholar 

  9. Knothe, G., Gerpen, J.V., Krahl, J.: The Biodiesel Handbook. AOCS Press, Champaign (2005)

  10. Kuwornu, D.K., Ahiekpor, J.C.: Optimisation of factors affecting the production of biodiesel from crude palm kernel oil and ethanol. Int. J. Energy Environ. 1, 675–682 (2010)

    Google Scholar 

  11. Leung, D.Y.C., Leung, M.K.H., Wu, X.: A review on biodiesel production using catalyzed transesterification. Appl. Energy. 87, 1083–1095 (2010). doi:10.1016/j.apenergy.2009.10.006

    Article  Google Scholar 

  12. Lu, Y., Ding, Y., Wu, Q.: Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J. Appl. Phycol., 23, 115–121 (2011).

    Article  Google Scholar 

  13. Ma, F., Clements, L. D., Hanna, M. A.: The effect of mixing on transesterification of beef tallow. Bioresour. Technol. 69, 289–293 (1999)

    Article  Google Scholar 

  14. Mher, L.C., Vidya Sagar, D., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006). doi:10.1016/j.rser.2004.09.002

    Article  Google Scholar 

  15. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)

  16. Ng, J.-H., Ng, H.K., Gan, S.: Advances in biodiesel fuel for application in compression ignition engines. Clean Technol. Environ. Policy 12, 459–493 (2010). doi:10.1007/s10098-009-0268-6

    Article  Google Scholar 

  17. National Biodiesel Board. Production statistics on Biodiesel. http://biodiesel.org/production/production-statistics (2016). Accessed 23 Jan 2016

  18. Paintsil, A., Armah, F.A., Yanful, E.K.: Assessment of the transesterification stage of biodiesel production I: application of a Plackett–Burman design to select the process variables. Waste Biomass Valorization (2016). doi:10.1007/s12649-016-9583-4

    Google Scholar 

  19. Peterson, C. L., Reece, D. L., Cruz, R., Thompson, J.: Liquid fuels from renewable resources. In: Proceedings of an alternative energy conference held in Nashville Tennessee, 12–15 December 1992

  20. Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L., Pérez, Á: Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261–268 (2009). doi:10.1016/j.biortech.2008.06.039

    Article  Google Scholar 

  21. Sharma, Y.C., Singh, B., Upadhyay, S.N.: Advancements in development and characterization of biodiesel: a review. Fuel 87, 2355–2373 (2008). doi:10.1016/j.fuel.2008.01.014

    Article  Google Scholar 

  22. Turck, R.: Method for producing fatty acid esters of monovalent alkyl alcohols and use thereof. US Patent No. US 6538146 B2, 2003

  23. Omar, W.N.N.W., Saidina Amin, N.A: Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass Bioenergy 35, 1329–1338 (2011). doi:10.1016/j.biombioe.2010.12.049

    Article  Google Scholar 

  24. Yoon, S.K., Kim, M.S., Kim, H.J., Choi, N.J.: Effects of canola oil biodiesel fuel blends on combustion, performance, and emissions reduction in a common rail diesel engine. Energies 7, 8132–8149 (2014). doi:10.3390/en7128132

    Article  Google Scholar 

  25. Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., Stewart, C. N.: Plants to power: bioenergy to fuel the future. Trends in plant science. 13(8), 421–429 (2008)

    Article  Google Scholar 

  26. Zinoviev, S., Arumugam, S., Miertus, S.: Biofuel production technologies, S.l.: international center for science and high technology, United Nations Industrial Development Organisation (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Paintsil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paintsil, A., Armah, F.A. & Yanful, E.K. Assessment of the Transesterification Stage of Biodiesel Production II: Optimisation of Process Variables Using a Box-Behnken Design. Waste Biomass Valor 9, 1399–1405 (2018). https://doi.org/10.1007/s12649-017-9860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9860-x

Keywords

Navigation