Skip to main content
Log in

Cellulase- and Xylanase-Producing Bacterial Isolates with the Ability to Saccharify Wheat Straw and Their Potential Use in the Production of Pharmaceuticals and Chemicals from Lignocellulosic Materials

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The efficient use of lignocellulosic materials for pharmaceutical and chemical production relies on the hydrolysis of their components into their building blocks (e.g. hexoses and pentoses), which can be converted later into chemicals of interest. This study aimed to isolate cellulase- and xylanase-producing bacteria for the bioconversion of lignocellulosic materials into their respective monomeric sugars. Bacterial isolates were screened using CMC- and Xylan–Trypan blue agar, and then cellulase and xylanase activities were evaluated by the 3,5-dinitro-salicylic acid (DNS) method. Furthermore, bacterial ability to saccharify wheat straw was tested. Ten bacterial isolates were found to have the ability to saccharify wheat straw, and to produce cellulase and xylanase enzymes simultaneously. The bacterial isolates were identified at molecular level using 16S rRNA gene sequencing and phylogenetic analysis. Bacterial isolates were identified as Cellulomonas sp. CX4, Cellulomonas sp. CX5, Bacillus sp. CX6, Bacillus sp. CX10, Paenibacillus illinoisensis CX11, Paenibacillus sp. CX14, Bacillus cereus CX15, and Bacillus sp. CX16, Paenibacillus barcinonensis CX17 and Cellulomonas sp. CX20. Among all the isolates, Bacillus sp. CX6 showed the highest ability to produce total reducing sugar (6.03 and 6.16 mg/ml), while the lowest ability to saccharify wheat straw was found with Cellulomonas sp. CX5 (2.01 and 2.12 mg/ml). This study presents cellulase- and xylanase- producing bacterial isolates for their potential to saccharify lignocellulosic materials for possible use in the production of pharmaceuticals and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Summerton, L., Sneddon, H.F., Jones, L.C., Clark, J.H.: Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry. Royal Society of Chemistry, CPI group Ltd, Croydon, UK (2016)

    Book  Google Scholar 

  2. Cherubini, F., Strømman, A.H.: Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefin. 5(5), 548–561 (2011).

    Article  Google Scholar 

  3. Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., Champreda, V.: Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym. Microb. Technol. 47(6), 283–290 (2010)

    Article  Google Scholar 

  4. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38(4), 522–550 (2012)

    Article  Google Scholar 

  5. Chesson, A., Forsberg, C.: Polysaccharide degradation by rumen microorganisms. In: The Rumen Microbial Ecosystem, pp. 329–381. Springer, New York (1997)

    Chapter  Google Scholar 

  6. Maki, M.L., Broere, M., Leung, K.T., Qin, W.: Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int. J. Biochem. Mol. Biol. 2(2), 146–154 (2011)

    Google Scholar 

  7. Chang, V.S., Holtzapple, M.T.: Fundamental factors affecting biomass enzymatic reactivity. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals. pp. 5–37. Springer, New York (2000)

    Chapter  Google Scholar 

  8. Ehsanipour, M., Suko, A.V., Bura, R.: Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. J. Ind. Microbiol. Biotechnol. 43(6), 807–816 (2016). doi:10.1007/s10295-016-1756-4

    Article  Google Scholar 

  9. Akhtar, J., Idris, A., Aziz, R.A.: Recent advances in production of succinic acid from lignocellulosic biomass. Appl. Microbiol. Biotechnol. 98(3), 987–1000 (2014)

    Article  Google Scholar 

  10. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007)

    Article  Google Scholar 

  11. Huang, X., Chen, M., Lu, X., Li, Y., Li, X., Li, J.-J.: Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb. Cell Fact. 13(1), 1 (2014)

    Article  Google Scholar 

  12. Kautola, H.: Itaconic acid production from xylose in repeated-batch and continuous bioreactors. Appl. Microbiol. Biotechnol. 33(1), 7–11 (1990)

    Article  Google Scholar 

  13. Isikgor, F.H., Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6(25), 4497–4559 (2015).

    Article  Google Scholar 

  14. Kurakake, M., Ide, N., Komaki, T.: Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr. Microbiol. 54(6), 424–428 (2007)

    Article  Google Scholar 

  15. Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, Á.T., Martínez, M.J.: Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour. Technol. 102(16), 7500–7506 (2011)

    Article  Google Scholar 

  16. Venkateswar Rao, L., Goli, J.K., Gentela, J., Koti, S.: Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour. Technol. 213, 299–310 (2016). doi:10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  17. Chaturvedi, V., Verma, P.: An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3. Biotech. 3(5), 415–431 (2013)

    Google Scholar 

  18. Maurya, D.P., Singla, A., Negi, S.: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 5(5), 597–609 (2015)

    Article  Google Scholar 

  19. Gibson, D.M., King, B.C., Hayes, M.L., Bergstrom, G.C.: Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr. Opin. Microbiol. 14(3), 264–270 (2011)

    Article  Google Scholar 

  20. Dashtban, M., Schraft, H., Qin, W.: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5(6), 578 (2009)

    Article  Google Scholar 

  21. Gincy, M., Sukumaran, R.K., Singhania, R.R., Pandey, A.: Progress in research on fungal cellulases for lignocellulose degradation. J. Sci. Ind. Res. 67, 898–907 (2008).

    Google Scholar 

  22. Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6(3), 219–228 (2003)

    Article  Google Scholar 

  23. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K.: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72(3), 805–810 (2008)

    Article  Google Scholar 

  24. Hu, J., Arantes, V., Saddler, J.N.: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels. 4(1), 1 (2011).

    Article  Google Scholar 

  25. Kumar, R., Wyman, C.E.: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour. Technol. 100(18), 4203–4213 (2009)

    Article  Google Scholar 

  26. Qing, Q., Wyman, C.E.: Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol. Biofuels 4(1), 1 (2011).

    Article  Google Scholar 

  27. Gusakov, A.V.: Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29(9), 419–425 (2011)

    Article  Google Scholar 

  28. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  29. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  30. Robson, L.M., Chambliss, G.H.: Cellulases of bacterial origin. Enzyme Microb. Technol. 11(10), 626–644 (1989). doi:10.1016/0141-0229(89)90001-X

    Article  Google Scholar 

  31. Patagundi, B.I., Kaliwal, B.: Isolation and characterization of cellulase producing bacteria from soil. Int. J. Curr. Microbiol. Appl. Sci. 3(5), 59–69 (2014)

    Google Scholar 

  32. Subramaniyan, S., Prema, P.: Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183(1), 1–7 (2000)

    Article  Google Scholar 

  33. Asha, B.M., Revathi, M., Yadav, A., Sakthivel, N.: Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J. Microbiol. Biotechnol. 22(11), 1501–1509 (2012).

    Article  Google Scholar 

  34. Ladeira, S.A., Cruz, E., Delatorre, A.B., Barbosa, J.B., Martins, M.L.L: Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron. J. Biotechnol. 18(2), 110–115 (2015). doi:10.1016/j.ejbt.2014.12.008

    Google Scholar 

  35. Subramaniyan, S., Prema, P.: Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22(1), 33–64 (2002). doi:10.1080/07388550290789450

    Article  Google Scholar 

  36. Gaur, R., Tiwari, S.: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15, 19 (2015). doi:10.1186/s12896-015-0129-9

    Article  Google Scholar 

  37. Sari, S., Pangstuti, A., Susilowati, A., Purwoko, T., Mahajoeno, E., Hidayat, W., Mardhena, I., Panuntun, D., Kurniawati, D., Anitasari, R.: Cellulolytic and hemicellulolytic bacteria from the gut of Oryctes rhinoceros larvae. Biodiversitas 17(1), 78–83 (2016). doi:10.13057/biodiv/d170111

    Article  Google Scholar 

  38. Sharma, A., Tewari, R., Soni, S.: Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 9(1), 76–86 (2015).

    Google Scholar 

  39. Alshelmani, M.I., Loh, T.C., Foo, H.L., Lau, W.H., Sazili, A.Q.: Biodegradation of palm kernel cake by cellulolytic and hemicellulolytic bacterial cultures through solid state fermentation. Sci. World J. 2014, 729852 (2014). doi:10.1155/2014/729852

    Article  Google Scholar 

  40. Abo-State, M.A., El-Sheikh, H.H., El-Temtamy, S.A., Hosny, M.: Isolation and identification of bacterial strains for saccharification of agriculture wastes for bioethanol production. Int. J. Adv. Res. Biol. Sci. 3(2), 170–180 (2016)

    Google Scholar 

  41. Akhtar, M.S., Saleem, M., Akhtar, M.W.: Saccharification of lignocellulosic materials by the cellulases of Bacillus subtilis. Int. J. Agr. Biol. 3, 199–202 (2001)

    Google Scholar 

  42. Sangkharak, K., Vangsirikul, P., Janthachat, S.: Isolation of novel cellulase from agricultural soil and application for ethanol production. Int. J. Adv. Biotechnol. Res. 2(2), 230–239 (2011)

    Google Scholar 

  43. Saxena, S., Bahadur, J., Varma, A.: Production and localisation of carboxymethylcellulase, xylanase and β-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34(5), 668–670 (1991)

    Article  Google Scholar 

  44. Poulsen, O., Petersen, L.: Growth of Cellulomonas sp. ATCC 21399 on different polysaccharides as sole carbon source induction of extracellular enzymes. Appl. Microbiol. Biotechnol. 29(5), 480–484 (1988)

    Article  Google Scholar 

  45. Rajoka, M.I., Malik, K.A.: Cellulase and hemicellulase production by Cellulomonas flavigena NIAB 441. Biotechnol. Lett. 6(9), 597–600 (1984)

    Article  Google Scholar 

  46. Rajoka, M.I., Malik, K.A.: Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour. Technol. 59(1), 21–27 (1997)

    Article  Google Scholar 

  47. Sanchez, M.M., Fritze, D., Blanco, A., Sproer, C., Tindall, B.J., Schumann, P., Kroppenstedt, R.M., Diaz, P., Pastor, F.I.: Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int. J. Syst. Evol. Microbiol. 55(Pt 2), 935–939 (2005). doi:10.1099/ijs.0.63383-0

    Article  Google Scholar 

  48. Pason, P., Kyu, K.L., Ratanakhanokchai, K.: Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72(4), 2483–2490 (2006)

    Article  Google Scholar 

  49. Sharma, M., Mehta, S., Kumar, A.: Purification and characterization of alkaline xylanase secreted from Paenibacillus macquariensis. Adv. Microbiol. 3, 32–41 (2013).

    Article  Google Scholar 

  50. Rivas, R., García-Fraile, P., Mateos, P.F., Martínez-Molina, E., Velázquez, E.: Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol. 56(12), 2777–2781 (2006)

    Article  Google Scholar 

  51. Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J.: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40(11), 5588–5617 (2011). doi:10.1039/c1cs15124j

    Article  Google Scholar 

  52. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L.: The path forward for biofuels and biomaterials. Science. 311(5760), 484–489 (2006)

    Article  Google Scholar 

  53. Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind. Crops Prod. 32(3), 175–201 (2010). doi:10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  54. Sun, N., Rodriguez, H., Rahman, M., Rogers, R.D.: Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?. Chem. Commun. 47(5), 1405–1421 (2011). doi:10.1039/c0cc03990j. (Cambridge, England)

    Article  Google Scholar 

  55. Barakat, A., de Vries, H., Rouau, X.: Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour. Technol. 134, 362–373 (2013). doi:10.1016/j.biortech.2013.01.169

    Article  Google Scholar 

  56. Kobayashi, H., Fukuoka, A.: Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem. 15(7), 1740–1763 (2013). doi:10.1039/C3GC00060E

    Article  Google Scholar 

Download references

Acknowledgements

AAQA and OOB are grateful for the research support provided by North-West University. AAQA and TM are thankful to the University of South Africa (UNISA) for the valuable support for their research. OOB would like to thank the National Research Foundation, South Africa for grant (Ref: UID91990), which has supported research in her laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Ahmed Qaed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.A.Q., Babalola, O.O. & McKay, T. Cellulase- and Xylanase-Producing Bacterial Isolates with the Ability to Saccharify Wheat Straw and Their Potential Use in the Production of Pharmaceuticals and Chemicals from Lignocellulosic Materials. Waste Biomass Valor 9, 765–775 (2018). https://doi.org/10.1007/s12649-017-9849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9849-5

Keywords

Navigation