Waste and Biomass Valorization

, Volume 9, Issue 5, pp 739–753 | Cite as

Assessment of the Use of Forest Biomass Residues for Bioenergy in Alto Alentejo, Portugal: Logistics, Economic and Financial Perspectives

  • Adriano Guilhermino
  • Gonçalo Lourinho
  • Paulo Brito
  • Nicolau Almeida
Original Paper
  • 132 Downloads

Abstract

Purpose

This paper presents a GIS-based assessment of the logistics aspects of forestry biomass residues utilization with the prospect of implementing a biomass plant in Alto Alentejo, a region of Portugal.

Methods

The method follows a cost minimization approach and focuses on the cost calculation of each energy unit generated (in €/MWh), as well as the demonstration of the main economic and financial statements within the project framework. Three municipalities are selected as candidate sites for the biomass plant: Avis, Crato and Portalegre; and the conversion technologies considered are fixed bed combustion (GC/ST), fluidized bed combustion (FBC/ST), and integrated biomass gasification (BIG/CC).

Results

Results show that the most suitable municipality for the implementation of a biomass plant is Portalegre, with average electricity production costs of 95, 98 and 133 €/MWh for each considered technology. The assessment also reveals that the power plant configurations studied are financially unattractive due to negative profitabilities. However, sensitivity analysis indicates that good economic performances can be achieved by considering larger biomass plants.

Conclusions

Biomass power generation in dedicated plants can be economically sustainable in Alto Alentejo, but may not be the most suitable option for the region taking into account the available biomass potential.

Keywords

Forestry biomass residues GIS Logistics Transportation Economics 

References

  1. 1.
    Bocci, E., Di Carloa, A., McPhail, S.J., Gallucci, K., Foscolo, P.U., Moneti, M., Villarini, M., Carlini, M.: Biomass to fuel cells state of the art: a review of the most innovative technology solutions. Int. J. Hydrogen Energ. 39, 21876–21895 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhu, X., Yao, Q.: Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Biores. Technol. 102, 10936–10945 (2011)CrossRefGoogle Scholar
  3. 3.
    Stasko, T.H., Conrado, R.J., Wankerl, A., Labatut, R., Tasseff, R., Mannion, J.T., Gao, H.O., Sanborn, S.D., Knott, G.: Mapping woody-biomass supply costs using forest inventory and competing industry data. Biomass Bioenerg. 35, 263–271 (2011)CrossRefGoogle Scholar
  4. 4.
    Rentizelas, A.A., Tolis, A.J., Tatsiopoulos, I.P.: Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renew. Sustain. Energ. Rev. 13, 887–894 (2009)CrossRefGoogle Scholar
  5. 5.
    Netto, C.A.: Potencial da biomassa florestal residual para fins energéticos de três concelhos do distrito de Santarém, (Masters dissertation, Universidade Nova de Lisboa) (2008)Google Scholar
  6. 6.
    Batidzirai, B., Faaij, A., Smeets, E.: Biomass and bioenergy supply from Mozambique. Energ. Sustain. Dev. 10, 54–81 (2006).CrossRefGoogle Scholar
  7. 7.
    Voets, T., Neven, A., Thewys, T., Kuppens, T.: GIS-BASED location optimization of a biomass conversion plant on contaminated willow in the Campine region (Belgium). Biomass Bioenerg. 55, 339–349 (2013)CrossRefGoogle Scholar
  8. 8.
    Gracia, C., Velázquez-Martí, B., Estornell, J.: An application of the vehicle routing problem to biomass transportation. Biosyst. Eng. 124, 40–52 (2014)CrossRefGoogle Scholar
  9. 9.
    Jones, G., Loeffler, D., Butler, E., Hummel, S., Chung, W.: The financial feasibility of delivering forest treatment residues to bioenergy facilities over a range of diesel fuel and delivered biomass prices. Biomass Bioenerg. 48, 171–180 (2013)CrossRefGoogle Scholar
  10. 10.
    Viana, H., Cohen, W.B., Lopes, D., Aranha, J.: Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energ. 87, 2551–2560 (2010)CrossRefGoogle Scholar
  11. 11.
    Lourinho, G., Brito, P.: Assessment of biomass energy potential in a region of Portugal (Alto Alentejo). Energ. 81, 189–201 (2015)CrossRefGoogle Scholar
  12. 12.
    Gómez, A., Rodrigues, M., Montañés, C., Dopazo, C., Fueyo, N.: The potential for electricity generation from crop and forestry residues in Spain. Biomass Bioenerg. 34, 703–719 (2010)CrossRefGoogle Scholar
  13. 13.
    Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., Fueyo, N.: An estimation of the energy potential of agro-industrial residues in Spain. Res. Conserv. Recycl. 54, 972–984 (2010).CrossRefGoogle Scholar
  14. 14.
    Han, S.K., Murphy, G.E.: Solving a woody biomass truck scheduling problem for a transport company in Western Oregon, USA. Biomass Bioenerg. 44, 47–55 (2012)CrossRefGoogle Scholar
  15. 15.
    Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., Cárdenas, R.: Methodology based on geographic information systems for biomass logistics and transport optimisation. Renew. Energ. 34, 555–565 (2009)CrossRefGoogle Scholar
  16. 16.
    Manzone, M., Balsari, P.: The energy consumption and economic costs of different vehicles used in transporting woodchips. FUEL 139, 511–515 (2015)CrossRefGoogle Scholar
  17. 17.
    Mobini, M., Sowlati, T., Sokhansanj, S.: Forest biomass supply logistics for a power plant using the discrete-event simulation approach. Appl. Energ. 88, 1241–1250 (2011)CrossRefGoogle Scholar
  18. 18.
    Samsatli, S., Samsatli, N.J., Shah, N.: BVCM: a comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation–mathematical formulation. Appl. Energ. 147, 131–160 (2015)CrossRefGoogle Scholar
  19. 19.
    Wiśnicki, B., Trojanowski, J., Kujawski, A.: Biomass supply logistics in the Szczecin area. Proc. Soc. Behav. Sci. 151, 351–359 (2014)CrossRefGoogle Scholar
  20. 20.
    Gonzales, D., Searcy, E.M., Ekşioĝlu, S.D.: Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Trans. Res. Part A Policy Pract. 49, 48–61 (2013)CrossRefGoogle Scholar
  21. 21.
    Yemshanov, D., McKenney, D.W., Fraleigh, S., McConkey, B., Huffman, T., Smith, S.: Cost estimates of post harvest forest biomass supply for Canada. Biomass Bioenerg. 69, 80–94 (2014)CrossRefGoogle Scholar
  22. 22.
    Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R.: Planning woody biomass logistics for energy production: a strategic decision model. Biomass Bioenerg. 33, 372–383 (2009)CrossRefGoogle Scholar
  23. 23.
    Delivand, M.K., Cammerino, A.R.B., Garofalo, P., Monteleone, M.: Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG emissions: a case study on electricity productions in South Italy. J. Clean. Prod. 99, 129–139 (2015)CrossRefGoogle Scholar
  24. 24.
    Ruiz, J.A., Juárez, M.C., Morales, M.P., Muñoz, P., Mendívil, M.A.: Biomass logistics: financial and environmental costs. Case study: 2 MW electrical power plants. Biomass Bioenerg. 56, 260–267 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhang, F., Johnson, D.M., Sutherland, J.W.: A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenerg. 35, 3951–3961 (2011)Google Scholar
  26. 26.
    Kaundinya, D.P., Balachandra, P., Ravindranath, N.H., Ashok, V.: A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: a case study of Tumkur district, India. Energy 52, 77–88 (2013)CrossRefGoogle Scholar
  27. 27.
    Bojić, S., Datkov, D., Brcanov, D., Georgijević, M., Martinov, M.: Location allocation of solid biomass power plants: case study of Vojvodina. Renew. Sustain. Energy Rev. 26, 769–775 (2013)CrossRefGoogle Scholar
  28. 28.
    Panichelli, L., Gnansounou, E.: GIS-based approach for defining bioenergy facilities location: a case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass Bioenerg. 32, 289–300 (2008)CrossRefGoogle Scholar
  29. 29.
    Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R., Taramasso, A.: Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenerg. 26, 15–25 (2004)CrossRefGoogle Scholar
  30. 30.
    Fundação Francisco Manuel dos Santos: BI das regiões, http://www.pordata.pt/Municipios/Quadro+Resumo/Alto+Alentejo+(NUTS+III)-6432
  31. 31.
    Gabinete de Políticas Públicas–Ministério da Agricultura do Mar do Ambiente e do Ordenamento do Território: Programa de Desenvolvimento Rural 2014–2020, Documento de Orientação. (2012)Google Scholar
  32. 32.
    Instituto Geográfico Português: Carta Administrativa Oficial de Portugal (2014)Google Scholar
  33. 33.
    Comunidade Intermunicipal do Alto Alentejo: Rede Viária (10k) (2009). http://www.cimaa.pt
  34. 34.
    Fundação Francisco Manuel dos Santos: Incêndios florestais nos Municípios, http://www.pordata.pt/Municipios/Inc%25C3%25AAndios+florestais-41
  35. 35.
    López-Rodríguez, F., Atanet, C.P., Blázquez, F.C., Celma, A.R.: Spatial assessment of the bioenergy potential of forest residues in the western province of Spain, Caceres. Biomass Bioenergy. 33, 1358–1366 (2009)CrossRefGoogle Scholar
  36. 36.
    Sá, A.J., Da, F.: Caracterização da Recolha de Matéria-Prima para a Produção de Pellets, (Masters dissertation, Universidade de Aveiro) (2009)Google Scholar
  37. 37.
    Decree-law no. 225/2007 of 31 May (2007). http://data.dre.pt/eli/dec-lei/225/2007/p/dre/pt/html
  38. 38.
    Freitas, C.J.P.: Central Termoeléctrica a Biomassa Florestal (CTBF), (Technical paper, Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto) (2009)Google Scholar
  39. 39.
    Comissão de Agricultura e Mar: Relatorio do Grupo de Trabalho da Biomassa (2013). http://www.parlamento.pt/ArquivoDocumentacao/Documents/coleccoes_relatorio-bio2013-2.pdf
  40. 40.
    DGEG–Direcção Geral de Energia e Geologia: Produção em regime especial 2015, http://www.erse.pt/pt/desempenhoambiental/prodregesp/2015/Comunicados/PRE_2015.xls.
  41. 41.
    Dornburg, V.: Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies. Biomass Bioenerg. 21, 91–108 (2001)CrossRefGoogle Scholar
  42. 42.
    Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F.: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenerg. 28, 35–51 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Adriano Guilhermino
    • 1
  • Gonçalo Lourinho
    • 1
  • Paulo Brito
    • 1
  • Nicolau Almeida
    • 1
  1. 1.C3I (Interdisciplinary Coordination for Research and Innovation)Polytechnic Institute of PortalegrePortalegrePortugal

Personalised recommendations