Skip to main content

Towards a Sustainable Route for the Production of Squalene Using Cyanobacteria

Abstract

Treatment of slaughterhouse wastewater is a huge industrial problem. The use of an algae biorefinery platform could be a sustainable technological alternative that produces value-added compounds instead of dumping the wastewater. For this reason, this research aimed to evaluate squalene production from the microalgae Phormidium autumnale cultivated using agroindustrial wastewater. A derivatization method was performed to determine the squalene and fatty acids content, evaluated by gas chromatography with flame ionization and mass spectrometry detectors. A total of 0.18 g/kg of squalene were found in the biomass, with a high content of unsaturated fatty acids (52%). Sensitivity analysis estimated production of 727–72,750 kg/year in industries with different capacities. In this sense, P. autumnale in agroindustrial wastewater could offer a potential alternative method of squalene production.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Xu, W., Ma, X., Wang, Y.: Production of squalene by microbes: an update. World J. Microbiol. Biotechnol. 32, 195 (2016)

    Article  Google Scholar 

  2. Spanova, M., Daum, G.M.: Squalene–biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 113, 1299–1320 (2011)

    Article  Google Scholar 

  3. Mura, S., Bui, D.T., Couvreur, P., Nicolas, J.: Lipid prodrug nanocarriers in cancer therapy. J. Control. Release. 208, 25–41 (2015)

    Article  Google Scholar 

  4. Xu, R., Fazio, G.C., Matsuda, S.P.: On the origins of triterpenoid skeletal diversity. Phytochemistry. 65(3), 261–291 (2004)

    Article  Google Scholar 

  5. Narayan Bhilwade, H., Tatewaki, N., Nishida, H., Konishi, T.: Squalene as novel food factor. Curr. Pharm. Biotechnol. 11, 875–880 (2010)

    Article  Google Scholar 

  6. Reddy, L.H., Couvreur, P.: Squalene: a natural triterpene for use in disease management and therapy. Adv. Drug Deliver. Rev. 61, 1412–1426 (2009)

    Article  Google Scholar 

  7. Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, P.R., Saraiva, A.J., Boussetta, N., Grimi, N., Barba, F.J.: Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Tech. 45, 296–310 (2015)

    Article  Google Scholar 

  8. Saito, K., Shirasagoa, Y., Suzukic, T., Aizakid, H., Hanadaa, K., Wakitad, T., Nishijimae, M., Fukasawa, M.: Targeting cellular squalene synthase, an enzyme essential for cholesterol biosynthesis, is a potential antiviral strategy against hepatitis C virus. J. virol. 89, 2220–2232 (2015)

    Article  Google Scholar 

  9. Wolosik, K., Knas, M., Zalewska, A., Niczyporuk, M., Przystupa, A.W.: The importance and perspective of plant-based squalene in cosmetology. J. Cosmet. Sci. 64(1), 59–66 (2013)

    Google Scholar 

  10. Ghimire, G.P., Thuan, N.H., Koirala, N., Sohng, J.K.: Advances in biochemistry and microbial production of squalene and its derivatives. J. Microbiol. Biotechnol. 26, 441–451 (2016)

    Article  Google Scholar 

  11. Nakazawa, A., Matsuura, H., Kose, R., Kato, S., Honda, D., Inouye, I., Watanabe, M.M.: Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 109(Supplement C), 287–291 (2012). https://doi.org/10.1016/j.biortech.2011.09.127

    Article  Google Scholar 

  12. Fan, K.W., Aki, T., Chen, F., Jiang, Y.: Enhanced production of squalene in the Thraustochytrid aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microb. Biot. 26, 1303–1309 (2010)

    Article  Google Scholar 

  13. Englund, E., Pattanaik, B., Ubhayasekera, S.J.K., Stensjö, K., Bergquist, J., Lindberg, P.: Production of squalene in Synechocystis sp. PCC 6803. PLoS ONE. 9(3), e90270 (2014). https://doi.org/10.1371/journal.pone.0090270

    Article  Google Scholar 

  14. Siedenburg, G., Jendrossek, D.: Squalene-hopene cyclases. Appl. Environ. Microbiol. 77, 3905–3915 (2011)

    Article  Google Scholar 

  15. Dangi, S.K., Dubey, S., Bhargava, S.: Cyanobacterial diversity: a potential source of bioactive compounds. Adv. Biol. Microbiol. 4(2474–7617), 001–003 (2017)

    Google Scholar 

  16. Koller, M., Marsalek, L.: Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis? Curr. Biotechnol. 4(4), 464–480 (2015)

    Article  Google Scholar 

  17. Chew, K.W., Yap, J.Y., Show, P.L., Suan, N.H., Juan, J.C., Ling, T.C., Chang, J.S.: Microalgae biorefinery: high value products perspectives. Bioresour. Technol. 229, 53–62 (2017)

    Article  Google Scholar 

  18. Santos, A.M., Roso, G.R., Menezes, C.R., Queiroz, M.I., Zepka, L.Q., Jacob-Lopes, E.: The bioeconomy of microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Desalt. Water Treat. 64, 12–20 (2017) 

    Article  Google Scholar 

  19. Santos, A.M., Depra, M.C., Santos, A.M., Zepka, L.Q., Jacob-Lopes, E.: Aeration energy requirements in microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Curr. Biotechnol. 5, 249–254 (2015)

    Article  Google Scholar 

  20. Rodrigues, D.B., Menezes, C.R., Mercadante, A.Z., Jacob-Lopes, E., Zepka, L.Q.: Bioactive pigments from microalgae Phormidium autumnale. Food Res. Int. 77(Part 2), 273–279 (2015)

    Article  Google Scholar 

  21. Rodrigues, D.B., Flores, É.M.M., Barin, J.S., Mercadante, A.Z., Jacob-Lopes, E., Zepka, L.Q.: Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res. Int. 65(Part B), 144–148 (2014). https://doi.org/10.1016/j.foodres.2014.06.037

    Article  Google Scholar 

  22. Freitas, A.C., Rodrigues, D., Rocha-Santos, T.A.P., Gomes, A.M.P., Duarte, A.C.: Marine biotechnology advances towards applications in new functional foods. Biotechnol. Adv. 30, 1506–1515 (2012)

    Article  Google Scholar 

  23. Titz, M., Kettl, K.-H., Shahzad, K., Koller, M., Schnitzer, H., Narodoslawsky, M.: Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol. Environ. Policy. 14(3), 495–503 (2012)

    Article  Google Scholar 

  24. Shahzad, K., Narodoslawsky, M., Sagir, M., Ali, N., Ali, S., Rashid, M.I., Ismail, I.M.I., Koller, M.: Techno-economic feasibility of waste biorefinery: using slaughtering waste streams as starting material for biopolyester production. Waste Manag. (New York, N.Y.). 67, 73–85 (2017). https://doi.org/10.1016/j.wasman.2017.05.047

    Article  Google Scholar 

  25. Luque, R., Clark, J.H.: Valorisation of food residues: waste to wealth using green chemical technologies. Sustain. Chem. Process. 1, 1–3 (2013)

    Article  Google Scholar 

  26. Rodrigues, D.B., Menezes, C.R., Mercadante, A.Z., Jacob-Lopes, E., Zepka, L.Q.: Bioactive pigments from microalgae Phormidium autumnale. Food Res Int. 77(Part 2), 273–279 (2015). https://doi.org/10.1016/j.foodres.2015.04.027

    Article  Google Scholar 

  27. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 111, 1–61 (1979)

    Article  Google Scholar 

  28. Water Pollution Control Federation American water works association.: Standard Methods for the Examination of Water and Wastewater, t.e.E.A., APHA, WPCF. Water Pollution Control Federation American water works association, Washington, DC (2005)

    Google Scholar 

  29. Francisco, E.C., Franco, T.T., Wagner, R., Jacob-Lopes, E.: Assessment of different carbohydrates as exogenous carbono source in cultivation of cyanobacteria. Bioproc. Biosyst. Eng. 1, 2–11 (2014)

    Google Scholar 

  30. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959). https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  31. Christie, W.W.: A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 23, 1072–1075 (1982)

    Google Scholar 

  32. European Commission: Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed (2007)

  33. Romari, K., Godart, F., Calleja, P.: Production of Docosahexaenoic Acid and/or Eicosapentaenoic Acid and/or Carotenoids in Mixotrophic Mode by Nitzschia. Google Patents (2017)

  34. Meixner, K., Kovalcik, A., Sykacek, E., Gruber-Brunhumer, M., Zeilinger, W., Markl, K., Haas, C., Fritz, I., Mundigler, N., Stelzer, F., Neureiter, M., Fuchs, W., Drosg, B.: Cyanobacteria biorefinery—production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. J. Biotechnol. 265(Supplement C), 46–53 (2018). https://doi.org/10.1016/j.jbiotec.2017.10.020

    Article  Google Scholar 

  35. Sekar, S., Chandramohan, M.: Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20(2), 113–136 (2008). https://doi.org/10.1007/s10811-007-9188-1

    Article  Google Scholar 

  36. Gong, M., Bassi, A.: Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 34(8), 1396–1412 (2016). https://doi.org/10.1016/j.biotechadv.2016.10.005

    Article  Google Scholar 

  37. Kajikawa, M., Kinohira, S., Ando, A., Shimoyama, M., Kato, M., Fukuzawa, H.: Accumulation of Squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS ONE. 10(3), e0120446 (2015). https://doi.org/10.1371/journal.pone.0120446

    Article  Google Scholar 

  38. Fabris, M., Matthijs, M., Carbonelle, S., Moses, T., Pollier, J., Dasseville, R., Baart, G.J., Vyverman, W., Goossens, A.: Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. New Phytol. 204(3), 521–535 (2014). https://doi.org/10.1111/nph.12917

    Article  Google Scholar 

  39. Achitouv, E., Metzger, P., Rager, M.N., Largeau, C.: C31-C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry. 65(23), 3159–3165 (2004). https://doi.org/10.1016/j.phytochem.2004.09.015

    Article  Google Scholar 

  40. Jiang, Y., Fan, K.-W., Tsz-Yeung Wong, R., Chen, F.: Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52(5), 1196–1200 (2004). https://doi.org/10.1021/jf035004c

    Article  Google Scholar 

  41. Bhattacharjee, P., Shukla, V.B., Singhal, R.S., Kulkarni, P.R.: Studies on fermentative production of squalene. World J. Microbiol. Biotechnol. 17(8), 811–816 (2001)

    Article  Google Scholar 

  42. Bhattacharjee, P., Singhal, R.S.: Extraction of squalene from yeast by supercritical carbon dioxide. World J. Microb. Biotechnol. 19, 605–608 (2003)

    Article  Google Scholar 

  43. Remme, J.F., Larssen, W.E., Bruheim, I., Sæbø, P.C., Sæbø, A., Stoknes, I.S.: Lipid content and fatty acid distribution in tissues from Portuguese dogfish, leafscale gulper shark and black dogfish. Comp. Biochem. Physiol. Part B. 143(4), 459–464 (2006). https://doi.org/10.1016/j.cbpb.2005.12.018

    Article  Google Scholar 

  44. Papiol, V., Fanelli, E., Cartes, J.E., Rumolo, P., López-Pérez, C.: A multi-tissue approach to assess the effects of lipid extraction on the isotopic composition of deep-sea fauna. J. Exp. Mar. Biol. Ecol. 497(Supplement C), 230–242 (2017). https://doi.org/10.1016/j.jembe.2017.10.001

    Article  Google Scholar 

  45. Popa, O., Băbeanu, N.E., Popa, I., Niță, S., Dinu-Pârvu, C.E.: Methods for obtaining and determination of squalene from natural sources. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/367202

    Article  Google Scholar 

  46. Francisco, É.C., Franco, T.T., Maroneze, M.M., Zepka, L.Q., Jacob-Lopes, E.: Produção de biodiesel de terceira geração a partir de microalgas. Ciência Rural. 45, 349–355 (2015)

    Article  Google Scholar 

  47. Roso, G.R., dos Santos, A.M., Queiroz, M.I., Barin, J.S., Zepka, L.Q., Jacob-Lopes, E.: The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery. Curr. Biotechnol. 4(4), 547–553 (2015)

    Article  Google Scholar 

  48. Venugopal, V., Kumaran, A.K., Sekhar Chatterjee, N., Kumar, S., Kavilakath, S., Nair, J.R., Mathew, S.: Biochemical characterization of liver oil of Echinorhinus brucus (bramble shark) and its cytotoxic evaluation on neuroblastoma cell lines (SHSY-5Y). Scientifica. (2016). https://doi.org/10.1155/2016/6294030b

    Article  Google Scholar 

  49. Silas, E.G., Selvaraj, G.S.D.: Descriptions of the adult and embryo of the bramble shark Echinorhinus brucus (Bonnaterre) obtained from the continental slope of índia. J. Mar. Biol. Assoc. India. 14, 395–401 (1972)

    Google Scholar 

  50. Nichols, P., Rayner, M.S., Stevens, J.D.: A Pilot Investigation of Northern Australian Shark Liver Oils: Characterization and Value-adding. CSIRO Marine Research, Hobart (2001)

    Google Scholar 

  51. Martineau, E., Wood, S.A., Miller, R.M., Jungblut, A.D., Hawes, I., Webster-Brown, J., Packer, M.A.: Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia. 711, 139–154 (2013)

    Article  Google Scholar 

  52. Clarke, M.W., Connolly, P.L., Bracken, J.J.: Catch, discarding, age estimation, growth and maturity of the squalid shark Deania calceus west and north of Ireland. Fish. Res. 56, 139–153 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The present study was carried out with the financial support of the National Council for Scientific and Technological Development (CNPq)- Brazil and funding from FAPERGS - Foundation for Research Support of the State of Rio Grande do Sul, Porto Alegre, RS, Brazil and CAPES improving coordination of Higher Education Personnel for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Wagner.

Ethics declarations

Conflict of interest

Mariane Bittencourt Fagundes declares that she has no conflict of interest and all the other authors: Raquel Guidetti Vendruscolo, Mariana Manzone Maroneze, Cristiano Ragagnin Menezes, Leila Queiroz Zepka, Juliano Smanioto Barin, Eduardo Jacob-Lopes and Roger Wagner also declares that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fagundes, M.B., Vendruscolo, R.G., Maroneze, M.M. et al. Towards a Sustainable Route for the Production of Squalene Using Cyanobacteria. Waste Biomass Valor 10, 1295–1302 (2019). https://doi.org/10.1007/s12649-017-0191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0191-8

Keywords

  • Bioactive compound
  • Gas chromatography
  • Microalgae
  • Phormidium autumnale
  • Sensitivity analysis