Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts

  • 248 Accesses

  • 2 Citations


Solid-state fermentation is a microbial process carried out mostly on the surface of solid materials. Grapefruit by-products are solids that can be used as a substrate-support matrix for fungal growth in solid fermentation. On the other hand, with the fermentation, the valorization of grapefruit by-products can be done because of recovery of secondary metabolites such as antioxidants. Fermentations were done using Raimbault columns as bioreactors. Two mixture levels (50 and 70% moisture content) were evaluated. Fungal growth was analysed online by CO2 quantification for fermentation of grapefruit by-products with Aspergillus niger GH1. Ethanolic extracts were used for antioxidant analyses (FRAP, LOI and DPPH·radical-scavenging). A. niger GH1 showed better growth on grapefruit by-products at 70% moisture content. Recovery of antioxidant compounds and solids reduction (50% of solids loss) was also higher at 70% moisture content. These results suggest that solid-state fermentation has great potential for valorization of grapefruit by-products as a support and a carbon source to produce antioxidants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Haminiuk, C.W.I., Maciel, G.M., Plata-Oviedo, M.S.V., Peralta, R.M.: Phenolic compounds in fruits—an overview. Int. J. Food Sci. Technol. 47(10), 2023–2044 (2012)

  2. 2.

    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels I. Solvent extraction method. Sep. Purif. Technol. 48(2), 182–188 (2006)

  3. 3.

    de Moraes Barros, H.R., de Castro Ferreira, T.A., Genovese, M.I.: Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 134(4), 1892–1898 (2012)

  4. 4.

    Lagha-Benamrouche, S., Madani, K.: Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crops Prod. 50(0), 723–730 (2013)

  5. 5.

    Xu, G.H., Chen, J.C., Liu, D.H., Zhang, Y.H., Jiang, P., Ye, X.Q.: Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci. 73(1), C11–C18 (2008)

  6. 6.

    Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., Madani, K.: Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 50(0), 77–87 (2013)

  7. 7.

    Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., Ye, X.: Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J. Food Sci. 78(1), C37–C42 (2013)

  8. 8.

    Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., et al.: Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123(2), 423–429 (2010)

  9. 9.

    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48(2), 189–196 (2006)

  10. 10.

    Yang, F.-C., Ma, T.-W., Lee, Y.-H.: Reuse of citrus peel to enhance the formation of bioactive metabolite-triterpenoid in solid-state fermentation of A. cinnamomea. Biochem. Eng. J. 78(0), 59–66 (2013)

  11. 11.

    Viniegra-González, G.: Solid state fermentation: definition, characteristics, limitations and monitoring. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-González, G. (eds.) Advances in Solid State Fermentation, pp. 5–22. Springer, Netherlands (1997)

  12. 12.

    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)

  13. 13.

    Chen, H., He, Q.: Value-added bioconversion of biomass by solid-state fermentation. J. Chem. Technol. Biotechnol. 87(12), 1619–1625 (2012)

  14. 14.

    Ooijkaas, L.P., Weber, F.J., Buitelaar, R.M., Tramper, J., Rinzema, A.: Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 18(8), 356–360 (2000)

  15. 15.

    Hölker, U., Lenz, J.: Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 8(3), 301–306 (2005)

  16. 16.

    Schuster, E., Dunn-Coleman, N., Frisvad, J., van Dijck, P.: On the safety of Aspergillus niger—a review. Appl. Microbiol. Biotechnol. 59(4–5), 426–435 (2002)

  17. 17.

    Buenrostro-Figueroa, J., Ascacio-Valdés, A., Sepúlveda, L., De la Cruz, R., Prado-Barragán, A., Aguilar-González, M.A., et al.: Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprocess. Technol. 92(4), 376–382 (2014)

  18. 18.

    AOAC: Official Methods of Analysis. Association of Official Analytical Chemist, USA (1990)

  19. 19.

    Raimbault, M., Alazard, D.: Culture method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9(3), 199–209 (1980)

  20. 20.

    Saucedo-Castañeda, G., Trejo-Hernández, M.R., Lonsane, B.K., Navarro, J.M., Roussos, S., Dufour, D., et al.: On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem. 29(1), 13–24 (1994)

  21. 21.

    Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2007)

  22. 22.

    Meléndez, N.P., Nevárez-Moorillón, V., Rodríguez-Herrera, R., Espinoza, J.C., Aguilar, C.N.: A microassay for quantification of 2,2-diphenyl-1-picrylhydracyl (DPPH) free radical scavenging. Afr. J. Biochem. Res. 8(1), 14–18 (2014)

  23. 23.

    Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)

  24. 24.

    Martínez-Ávila, G.C., Aguilera-Carbó, A.F., Rodríguez-Herrera, R., Aguilar, C.N.: Fungal enhancement of the antioxidant properties of grape waste. Ann. Microbiol. 62(3), 923–930 (2012)

  25. 25.

    Rhee, K.S.: Factors affecting oxygen uptake in model systems used for investigating lipid peroxidation in meat. J. Food Sci. 43(1), 6–9 (1978)

  26. 26.

    Toivonen, P.M.A., Sweeney, M.: Differences in chlorophyll loss at 13 °C for two broccoli (Brassica oleracea L.) cultivars associated with antioxidant enzyme activities. J. Agric. Food Chem. 46(1), 20–24 (1998)

  27. 27.

    Robledo, A., Aguilera-Carbó, A., Rodriguez, R., Martinez, J., Garza, Y., Aguilar, C.N.: Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotechnol. 35(6), 507–513 (2008)

  28. 28.

    Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodriguez, R., de la Garza, H., Teixeira, J.A., et al.: Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 30(1), 24–27 (2009)

  29. 29.

    Moo-Young, M., Moreira, A., Tengerdy, R.: Principles of solid-substrate fermentation. In: Smith, J.E., Berry, D.R., Kristiansen, B. (eds.) The Filamentous Fungi, pp. 117–144. Edward Arnold, London (1983)

  30. 30.

    Rincón, A.M., Vásquez, A., Padilla, M.: Composición química y compuestos bioactivos de las harinas de cáscaras de naranja (citrus sinensis), mandarina (citrus reticulata) y toronja (citrus paradisi) cultivadas en Venezuela. Arch. Latinoam. Nutr. 55, 305–310 (2005)

  31. 31.

    Nagel, F.-J.J.I., Tramper, J., Bakker, M.S.N., Rinzema, A.: Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol. Bioeng. 72(2), 219–230 (2001)

  32. 32.

    Rahardjo, Y.S.P., Tramper, J., Rinzema, A.: Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24(2), 161–179 (2006)

  33. 33.

    Chen, H.: Modern Solid State Fermentation—Theory and Practice. Springer, Londres (2013)

  34. 34.

    Gervais, P., Molin, P.: The role of water in solid-state fermentation. Biochem. Eng. J. 13(2–3), 85–101 (2003)

  35. 35.

    Ajila, C.M., Gassara, F., Brar, S., Verma, M., Tyagi, R.D., Valéro, J.R.: Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity. Food Bioprocess. Technol. 5(7), 2697–2707 (2012)

  36. 36.

    Ajila, C.M., Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R.: Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidants. Food Chem. 126(3), 1071–1080 (2011)

Download references


RLC thanks the Mexican Council for Science and Technology (CONACYT) Mexico for the financial support during his MSc studies.

Author information

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larios-Cruz, R., Buenrostro-Figueroa, J., Prado-Barragán, A. et al. Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts. Waste Biomass Valor 10, 763–769 (2019). https://doi.org/10.1007/s12649-017-0156-y

Download citation


  • Aspergillus niger GH1
  • CO2 production
  • Antioxidant extraction
  • Packed-bed bioreactor