Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1203–1222 | Cite as

Utilization of MSW-Derived Char for Catalytic Reforming of Tars and Light Hydrocarbons in the Primary Syngas Produced During Wood Chips and MSW-RDF Air Gasification

  • Gnouyaro Palla Assima
  • Antonin Paquet
  • Jean-Michel LavoieEmail author
Original Paper


The present work aimed at optimising the design and operation of char utilization as a low cost catalyst for tars reforming. The effect of temperature, tars composition, light hydrocarbons composition, steam content and type of reformer on the conversion of tars and light hydrocarbons into additional syngas using sorted municipal solid waste (MSW)—derived char was systematically monitored. Reforming tests were carried out using industrial primary syngas produced by air gasification of wood chips and MSW-RDF in a commercial fluidized bed gasifier. Up to 85% of tars present in the primary syngas have been converted to permanent gases at 871 °C, while passing through the catalytic fixed bed of char, for 1.4 s, at atmospheric pressure and syngas space velocities in the 3500–4000/h relative to the char in the bed (0.82 NL/g h). Content of multi-ring aromatics decreased following the passage of the syngas through the char bed leaving naphthalene and xylene as the predominant residuals. Propane, propylene and ethylene were completely converted. Up to 30% methane conversion was reached at 925 °C while ethane conversion was only occurring under high steam content of 65 vol%.

Graphical Abstract


Tars Catalytic reforming Char Syngas Gasification Light hydrocarbons 

List of symbols


The index 0 indicates an initial value


Internal Standard


Conversion of species i


Mass flow rate of the species i


Concentration of the species i


Surface of a peak in the spectrum of species i


Calibration factor of species i with respect to the internal standard


Calibration factor of the species 1 with respect to the species 2


Factor of reduction of  \(\frac{{\left[ {E_{2} } \right]}}{{\left[ {E_{1} } \right]}}\) ratio


Rate of variation of  \(\frac{{\left[ {E_{2} } \right]}}{{\left[ {E_{1} } \right]}}\) ratio


Mean residence \(\left( {\frac{V}{\upsilon }} \right)\) time




Activation energy


Pre-exponential factor


Ideal gas constant


Reaction constant


Char concentration injected into the reformer at reaction conditions


Molecular weight of species i


Mass fraction of species i in the Char


Gas volume flow


Damköhler number

\(\overline {{\text{X}}}\)

Average conversion


Reduced time



The authors are grateful to funders of the Industrial Research Chair on Cellulosic Ethanol and Biocommodities of the Université de Sherbrooke and NSERC (CRDPJ 486964-2015) for their support, to Esteban Chornet for his guidance throughout this project, and to Boris Valsecchi for technical assistance. The authors would also like to thank MITACS (Grant Number IT03931) for supporting Dr Gnouyaro Palla Assima’s salary during the project.


  1. 1.
    Labrecque, R., Lavoie, J.-M.: Dry reforming of methane with CO2 on an electron-activated iron catalytic bed. Bioresour. Technol. 102, 11244–11248 (2011)CrossRefGoogle Scholar
  2. 2.
    Banville, M., Labrecque, R., Lavoie, J.-M.: Dry reforming of methane under an electro-catalytic bed: effect of electrical current and catalyst composition. Energy Sustain. V. 186, 603–611 (2014). Google Scholar
  3. 3.
    Lavoie, J.-M.: Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front. Chem. 2, 81 (2014). CrossRefGoogle Scholar
  4. 4.
    Milne, T.A., Abatzoglou, N., Evans, R.J.: Biomass gasifier “tars”: their nature, formation, and conversion, vol. 570. National Renewable Energy Laboratory, Golden (1998). CrossRefGoogle Scholar
  5. 5.
    Corella, J., Herguido, J., Gonzalez-Saiz, J., Alday, F.J., Rodriguez-Trujillo, J.L.: Fluidized bed steam gasification of biomass with dolomite and with a commercial FCC catalyst. In: Bridgwater, A.V., Kuester, J.L. (eds.) Res. Thermochem. Biomass Convers, pp. 754–765. Springer Netherlands, Dordrecht (1988). CrossRefGoogle Scholar
  6. 6.
    Narvaez, I., Orıo, A., Aznar, M.P., Corella, J.: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind. Eng. Chem. Res. 35, 2110–2120 (1996). CrossRefGoogle Scholar
  7. 7.
    Devi, L., Ptasinski, K.J., Janssen, F.J.: A review of the primary measures for tars elimination in biomass gasification processes. Biomass Bioenergy. 24, 125–140 (2003)CrossRefGoogle Scholar
  8. 8.
    Sutton, D., Kelleher, B., Ross, J.R.H.: Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73, 155–173 (2001). CrossRefGoogle Scholar
  9. 9.
    Rapagnà, S., Jand, N., Kiennemann, A., Foscolo, P.U.: Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy. 19, 187–197 (2000). CrossRefGoogle Scholar
  10. 10.
    Aznar, P., Caballero, M.A., Gil, J., Martı, J.A.: Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Fuel Energy Abstr. 40, 119 (1999). Google Scholar
  11. 11.
    Bangala, D.N., Abatzoglou, N., Chornet, E.: Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2, and La2O3. AIChE J. 44, 927–936 (1998). CrossRefGoogle Scholar
  12. 12.
    Brandt, P., Larson, E., Henriksen, U.: High tar reduction in a two stage gasifier. Energy Fuels 14, 816–819 (2000)CrossRefGoogle Scholar
  13. 13.
    Henriksen, U., Christensen, O.: Gasification of straw in a two-stage 50 kW gasifier. In: Proceedings of the 8th European Conference on Biomass for Energy, Environment, Agriculture and Industry. vol 2, pp. 1568–1578. Pergamon, Elsevier Science Ltd. Oxford, UK: (1994)Google Scholar
  14. 14.
    Susanto, H., Beenackers, A.A.C.M.: A moving-bed gasifier with internal recycle of pyrolysis gas. Fuel. 75, 1339–1347 (1996). CrossRefGoogle Scholar
  15. 15.
    Hofbauer, H., Fleck, T., Veronik, G., Rauch, R., Mackinger, H., Fercher, E.: The FICFB-gasification process. In: Bridgwater, A.V., Boocock, D.G.B. (eds.) Developments in Thermochemical Biomass Conversion, pp. 1016–1025. Blackie, London (1997)CrossRefGoogle Scholar
  16. 16.
    Fercher, E., Hofbauer, H., Fleck, T., Rauch, R., Veronik, G.: Two years experience with the FICFB-gasification process. In: Kopetz, H., Weber, T., Palz, W., Chartier, P., Ferrero, G.L. (eds.) Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry, pp. 280–283. Wurzburg, (1998)Google Scholar
  17. 17.
    Zschetzsche, A., Hofbauer, H., Schmidt, A.: Biomass gasification in an internal circulating fluidized bed. In: Proceedings of the Eighth European Conference on Biomass for Agriculture and Industry, vol. 3, pp. 1771–1777. (1998)Google Scholar
  18. 18.
    Chembukulam, S.K., Dandge, A.S., Rao, N.L.K., Seshagiri, K., Vaidyeswaran, R.: Smokeless fuel from carbonized sawdust. Ind. Eng. Chem. Prod. Res. Dev. 20, 714–719 (1981). CrossRefGoogle Scholar
  19. 19.
    Zwart, R.W.R., Vreugdenhil, B.J.: Tar formation in pyrolysis and gasification, Energy Research Center of the Netherlands, 37, ECN-E-08-087 (2009)Google Scholar
  20. 20.
    Jönsson, O.: Thermal cracking of tars and hydrocarbons by addition of steam and oxygen in the cracking zone. In: Overend, R.P., Milne, T.A., Mudge, L.K. (eds.) Fundamentals of Thermochemical Biomass Conversion, pp. 733–746. Elsevier Applied Science, London (1985)CrossRefGoogle Scholar
  21. 21.
    Morf, P., Hasler, P., Hugener, M., Nussbaumer, T.: Characterization of products from biomass tar conversion. In: Bridgewater, A.V. (ed.) Progress in Thermochemical Biomass Conversion, pp. 150–161. Blackwell Science, Oxford (2001). CrossRefGoogle Scholar
  22. 22.
    Delgado, J., Aznar, M.P., Corella, J.: Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind. Eng. Chem. Res. 36, 1535–1543 (1997). CrossRefGoogle Scholar
  23. 23.
    Elliott, D.C.: Relation of reaction time and temperature to chemical compositions of pyrolysis oils. ACS Symp. Ser. 376, 55–65 (1988)CrossRefGoogle Scholar
  24. 24.
    Ellig, D.L., Lai, C.K., Mead, D.W., Longwell, J.P., Peters, W.A.: Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz. Ind. Eng. Chem. Process Des. Dev. 24, 1087–1080 (1985)CrossRefGoogle Scholar
  25. 25.
    Aldèn, H., Bjorkman, E., Carlsson, M., Wadheinm, L.: Catalytic cracking of naphthalene on dolomite, in: Bridgwater, A.V. (ed.) Advances in Thermochemical Biomass Conversion vol. 1, pp. 216–232. Blackie Academic, London (1993)CrossRefGoogle Scholar
  26. 26.
    Simell, P.A., Kurkela, E., Stahlberg, P., Hepola, J.: Developpement of catalyst gas cleaning in biomass gasification. In: Seminar on power production from biomass II. Espoo, Finland (1995)Google Scholar
  27. 27.
    Sarvaramini, A., Larachi, F.: Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals. Fuel. 97, 741–750 (2012). CrossRefGoogle Scholar
  28. 28.
    Sato, K., Fujimoto, K.: Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification. Catal. Commun. 8, 1697–1701 (2007). CrossRefGoogle Scholar
  29. 29.
    Zhang, R., Wang, Y., Brown, R.C.: Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Convers. Manag. 48, 68–77 (2007). CrossRefGoogle Scholar
  30. 30.
    Min, Z., Yimsiri, P., Asadullah, M., Zhang, S., Li, C.Z.: Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel. 90, 2545–2552 (2011). CrossRefGoogle Scholar
  31. 31.
    Jacoby, W.A., Gebhard, S.C., Vojdani, R.L.: Lifetime testing of catalysts for biosyngas conditioning—single versus dual catalyst comparison. Thermochemical conversion: Process Research Branch C-Milestone Completion Report (1995)Google Scholar
  32. 32.
    Simell, P.A., Leppälahti, J.K., Kurkela, E.A.: Tar-decomposing activity of carbonate rocks under high CO2 partial pressure. Fuel. 74, 938–945 (1995). CrossRefGoogle Scholar
  33. 33.
    Lai, S., Chen, P., Longwell, P.: Thermal Reaction of m-cresol over calcium oxide between 350E and 600EC. Fuel. 66, 525–531 (1987)CrossRefGoogle Scholar
  34. 34.
    Font Palma, C.: Modelling of tar formation and evolution for biomass gasification: a review. Appl. Energy. 111, 129–141 (2013). CrossRefGoogle Scholar
  35. 35.
    Mathieu, P., Dubuisson, R.: Performance analysis of a biomass gasifier. Energy Convers. Manag. 43, 1291–1299 (2002). CrossRefGoogle Scholar
  36. 36.
    Cantelo, R.C.: The thermal decomposition of methane. J. Phys. Chem. 28, 1036–1048 (1924)CrossRefGoogle Scholar
  37. 37.
    Towell, G.D., Martin, J.J.: Kinetic data from nonisothermal experiments: thermal decomposition of ethane, ethylene, and acetylene. AIChE J. 7, 693–698 (1961). CrossRefGoogle Scholar
  38. 38.
    Buekens, A.G., Froment, G.F.: Thermal cracking of propane. Kinetics and products distributions. Ind. Eng. Chem. Process Des. Dev. 7, 435–447 (1968)CrossRefGoogle Scholar
  39. 39.
    Choudhary, V.R., Rane, V.H., Rajput, A.M.: Simultaneous thermal cracking and oxidation of propane to propylene and ethylene. AIChE J. 44, 2293–2301 (1998). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Gnouyaro Palla Assima
    • 1
  • Antonin Paquet
    • 1
  • Jean-Michel Lavoie
    • 1
    Email author
  1. 1.Chaire de Recherche Industrielle sur l’Éthanol Cellulosique et les Biocarburants (CRIEC-B)Université de SherbrookeSherbrookeCanada

Personalised recommendations