Waste and Biomass Valorization

, Volume 10, Issue 5, pp 1303–1310 | Cite as

Hydrothermal Treatments of Cistus ladanifer Industrial Residues Obtained from Essential Oil Distilleries

  • Júnia Alves-Ferreira
  • Luís C. Duarte
  • Maria C. Fernandes
  • Helena Pereira
  • Florbela CarvalheiroEmail author
Short Communication



The aim of this study was to optimize hydrothermal treatments (autohydrolysis) for selective hydrolysis of hemicelluloses in the residues obtained from the industrial steam distillation of Cistus ladanifer (rock-rose) for essential oil extraction (CLR). The effect of the autohydrolysis in the removal of extractives of these residues was also evaluated.


The raw material was treated with water in a 6:1 liquid-to-solid ratio (w/w) and the effect of temperature (130–230 °C) on the composition of liquid and solid phases were evaluated and interpreted using the severity factor (log R0).


The highest recovery of oligosaccharides (24.7 g/L), corresponding to a yield of 28.4 g/100 g of CLR was obtained at moderate conditions, log R0 of 3.12. Together with hemicelluloses, polar extracts were also largely solubilized during the hydrothermal process yielding hydrolysates with a relevant concentration of phenolics. The highest glucan content (35.6 g/100 g of CLR) of the solid residue was obtained at more severe conditions, log R0 of 4.0 (220 °C). There was no apparent lignin solubilisation in any of the conditions, which is an advantage of this hydrolytic pretreatment.


Cistus ladanifer residues demonstrated to have potential to be used in the biorefinery framework with a full upgrade of all biomass fractions.


Autohydrolysis Biorefinery Cistus ladanifer residues Extractives Oligosaccharides 



Junia Alves-Ferreira is grateful to CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 700 40−020, Brazil (doctoral scholarship – Process 9109/13−7). This work was supported by QREN Project “Biomassa Endógena”. Centro de Estudos Florestais is a research unit funded by FCT - Fundação para a Ciência e Tecnologia (UID/AGR/00239/2013). Instituto de Ciências Agrárias e Ambientais Mediterrânicas is a research unit funded by FCT (UID/AGR/00115/2013). The authors thank Joaquina Silva, Lídia Silva and Céu Penedo for their technical support.


  1. 1.
    Morales-Soto, A., Oruna-Concha, M.J., Elmore, J.S., Barrajón-Catalán, E., Micol, V., Roldán, C., Segura-Carretero, A.: Volatile profile of Spanish Cistus plants as sources of antimicrobials for industrial applications. Ind. Crops. Prod. 74, 425–433 (2015)CrossRefGoogle Scholar
  2. 2.
    Rincón, J., De Lucas, A., Gracia, I.: Isolation of rock rose essential oil using supercritical CO2 extraction. Sep. Sci. Technol. 35, 2745–2763 (2000)CrossRefGoogle Scholar
  3. 3.
    Clamote, F., Porto, A.C.M., Araújo, P.V., Holyoak, D.T., Pereira, A.J., Aguiar, C., Lourenço, J.: Cistus ladanifer L. subsp. ladanifer—Mapa de distribuição. Flora-On: Flora de Portugal Interactiva, Sociedade Portuguesa de Botânica (2016). Accessed 12 Oct 2016
  4. 4.
    Mariotti, J.P., Tomi, F., Casanova, J., Costa, J., Bernardini, A.F.: Composition of the essential oil of C. ladaniferus L. Cultivated in Corsica (France). Flavour Frag. J. 12, 147 (1997)CrossRefGoogle Scholar
  5. 5.
    Gomes, P.B., Mata, V.G., Rodrigues, A.E.: Characterization of the Portuguese-grown Cistus ladanifer essential oil. J. Essent. Oil Res. 17, 160–165 (2005)CrossRefGoogle Scholar
  6. 6.
    Andrade, D., Gil, C., Breitenfeld, L., Domingues, F., Duarte, A. P.: Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind. Crops Prod. 30, 165–167 (2009)CrossRefGoogle Scholar
  7. 7.
    Nuñez-Olivera, E., Martinez-Abaigar, J., Escudero, J.C., García-Novo, F.: A comparative study of Cistus ladanifer shrub lands in Extremadura (CW Spain) on the basis of woody species composition and cover. Vegetatio. 117, 123–132 (1995)CrossRefGoogle Scholar
  8. 8.
    Greche, H., Mrabet, N., Zrira, S., Ismaili-Alaoui, M., Benjilali, B., Boukir, A.: The volatiles of the leaf oil of C. ladanifer L. var. albiflorus and Labdanum extracts of Moroccan origin and their antimicrobial activities. J. Essent. Oil Res. 21, 166–173 (2009)CrossRefGoogle Scholar
  9. 9.
    Zidane, H., Elmiz, M., Aouinti, F., Tahani, A., Wathelet, J., Sindic, M., Elbachiri, A.: Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol. 12, 5314–5320 (2013)CrossRefGoogle Scholar
  10. 10.
    Ferreira, S., Duarte, A.P., Ribeiro, M.H.L., Queiroz, J.A., Domingues, F.C.: Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem. Eng. J. 45, 192–200 (2009)CrossRefGoogle Scholar
  11. 11.
    Gil, N., Domingues, F.C., Amaral, M.E., Duarte, A.P.: Optimization of diluted acid pretreatment of Cytisus striatus and Cistus ladanifer for bioethanol production. J. Biobased Mater. Bio. 6, 1–7 (2012)CrossRefGoogle Scholar
  12. 12.
    Ferro, D., Fernandes, M.C., Paulino, A.F.C., Prozil, S.O., Gravitis, J., Evtuguin, D.V., Xavier, A.M.R.B.: Bioethanol production from Cistus ladanifer after steam explosion pretreatment. Biochem. Eng. J. 104, 98–105 (2015)CrossRefGoogle Scholar
  13. 13.
    Carvalheiro, F., Moniz, P., Duarte, L.C., Esteves, M.P., Girio, F.M.: Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38, 221–227 (2011)CrossRefGoogle Scholar
  14. 14.
    Garrote, G., Domínguez, H., Parajó, J.C.: Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng. 52, 211–218 (2002)CrossRefGoogle Scholar
  15. 15.
    Rivas, B., Domínguez, J.M., Domínguez, H., Parajó, J.C.: Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb. Technol. 31, 431–438 (2002)CrossRefGoogle Scholar
  16. 16.
    Carvalheiro, F., Esteves, M.P., Parajó, J.C., Pereira, H., Gírio, F.M.: Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 91, 93–100 (2004)CrossRefGoogle Scholar
  17. 17.
    Branco, P.C., Dionísio, A.M., Torrado, I., Carvalheiro, F., Castilho, P.C., Duarte, L.C.: Autohydrolysis of Anonna cherimola Mill. seeds: optimization, modelling and products characterization. Biochem. Eng. J. 104, 2–9 (2015)CrossRefGoogle Scholar
  18. 18.
    Overend, R.P., e Chornet, E.: Heavy-oil cracking: the case for nonhomogenous kinetics. Can. J. Phys. 68, 1105–1111 (1990)CrossRefGoogle Scholar
  19. 19.
    Overend, R.P., Chornet, E.: Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R. Soc. Lond. A321, 523–536 (1987)CrossRefGoogle Scholar
  20. 20.
    Moniz, P., Pereira, H., Quilhó, T., Carvalheiro, F.: Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind. Crops Prod. 50, 145–153 (2013)CrossRefGoogle Scholar
  21. 21.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden (2008)Google Scholar
  22. 22.
    AOAC: Official Methods of Analysis, 11th edn. AOAC, Washington, DC (1975)Google Scholar
  23. 23.
    Roseiro, L.B., Tavares, C.S., Roseiro, J.C., Rauter, A.P.: Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind. Crops Prod. 44, 119–126 (2013)CrossRefGoogle Scholar
  24. 24.
    Paulino, A.F.C.: Valorização da biomassa lenhocelulósica: estudo de sacarificação enzimática do cardo e da esteva. Master Thesis, IPBEJA (ESA), Beja, (2013)Google Scholar
  25. 25.
    Vázquez, M.J., Alonso, J.L., Domínguez, H., Parajó, J.C.: Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Ind. Crops Prod. 24, 152–159 (2006)CrossRefGoogle Scholar
  26. 26.
    Garrote, G., Parajó, J.C.: Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci. Technol. 36, 111–123 (2002)CrossRefGoogle Scholar
  27. 27.
    Feria, M.J., López, F., García, J.C., Pérez, A., Zamudio, M.A.M., Alfaro, A.: Valorization of Leucaena leucocephala for energy and chemicals from autohydrolysis. Biomass Bioenergy. 35, 2224–2233 (2011)CrossRefGoogle Scholar
  28. 28.
    Silva-Fernandes, T., Duarte, L. C., Carvalheiro, F., Loureiro-Dias, M. C., Fonseca, C., Gírio, C.: Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe. Bioresour. Technol. 183, 213–220 (2015)CrossRefGoogle Scholar
  29. 29.
    Garrote, G., Cruz, J.M., Domínguez, H., Parajó, J.C.: Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. J. Chem. Technol. Biotechnol. 78, 392–398 (2003)CrossRefGoogle Scholar
  30. 30.
    Rostro, M., Sánchez-González, M., Rivas, S., Moure, A., Domínguez, H., Parajó, J.C.: Non-isothermal autohydrolysis of nixtamalized maize pericarp: production of nutraceutical extracts. LWT-Food Sci. Technol. 58, 550–556 (2014)CrossRefGoogle Scholar
  31. 31.
    Conde, E., Moure, A., Dominguez, H., Parajo, J.C.: Fractionation of antioxidants from autohydrolysis of barley husks. J. Agric. Food Chem. 56, 10651–10659 (2008)CrossRefGoogle Scholar
  32. 32.
    Akpinar, O., Gunay, K., Yilmaz, Y., Levent, O., Bostanci, S.: Enzymatic processing and antioxidant activity of agricultural waste autohydrolysis liquors. Bioresources. 5, 699–711 (2010)Google Scholar
  33. 33.
    Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I.: Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 157, 258–266 (2017)CrossRefGoogle Scholar
  34. 34.
    Buruiana, C.-T., Vizireanu, C., Garrote, G., Parajó, J.C.: Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind. Crops Prod. 54, 32–39 (2014)CrossRefGoogle Scholar
  35. 35.
    Gullón, B., Yañez, R., Alonso, J.L., Parajó, J.C.: Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour. Technol. 101, 6676–6684 (2010)CrossRefGoogle Scholar
  36. 36.
    Martin, J.F.G., Cuevas, M., Bravo, V., Sanchez, S.: Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis. Renew. Energy. 35, 1602–1608 (2010)CrossRefGoogle Scholar
  37. 37.
    Romaní, A., Garrote, G., José, Luis, Alonso, J.L., Parajó, J.C.: Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour. Technol. 101, 8706–8712 (2010)CrossRefGoogle Scholar
  38. 38.
    Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D.: Top value-added chemicals from biomass. Volume II—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland (2007)CrossRefGoogle Scholar
  39. 39.
    Morais, A.P. S., Sansigolo, C.A., Neto, M.O.: Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index. Bioresour. Technol. 214, 623–628 (2016)CrossRefGoogle Scholar
  40. 40.
    Martin-Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villar, J.C.: Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153, 236–244 (2014)CrossRefGoogle Scholar
  41. 41.
    Fernandez-Arroyo, S., Barrajon-Catalan, E., Micol, V., Segura-Carretero, A., Fernandez-Gutierrez, A.: High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a Cistus ladanifer aqueous extract. Phytochem. Anal. 21, 307–313 (2010)CrossRefGoogle Scholar
  42. 42.
    Barrajón-Catalán, E., Fernández-Arroyo, S., Saura, D., Guillén, E., Fernández-Gutiérrez, A., Segura-Carreter, A., Micol, V.: Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol. 48, 2273–2282 (2010)CrossRefGoogle Scholar
  43. 43.
    Barros, L., Dueñas, M., Alves, C.T., Silva, S., Henriques, M., Santos-Buelga, C., Ferreira, I.C.F.R.: Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind. Crops Prod. 41, 41–45 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e GeologiaLisboaPortugal
  2. 2.Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja)BejaPortugal
  3. 3.Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
  4. 4.ICAAM - Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations