Skip to main content
Log in

Influence of Synthetic and Natural Antioxidants on the Oxidation Stability of Beef Tallow Before Biodiesel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Beef tallow is a promising alternative as a non-edible raw material for biodiesel production, due to its lower price compared to vegetable oils such as soybean oil. The problem of using beef tallow as a raw material for biodiesel is its high acidity level, found as a consequence of hydrolysis and oxidation reactions. These degradation processes are significant in the presence of high levels of humidity and temperature, which are usually found in the storage conditions. In this study, the influence of synthetic and natural antioxidants on the oxidation stability of beef tallow was evaluated using Rancimat tests and by monitoring their acid and peroxide values over 148 days of storage in an oven. The studied synthetic and natural (cashew nut shell liquid, CNSL) antioxidants were effective to prevent oxidation of beef tallow on storage conditions. Biodiesel samples were produced from samples of beef tallow with and without antioxidants. The biodiesel samples produced from beef tallow containing BHT presented the best induction period values. The biodiesel samples produced from beef tallow containing technical CNSL (0.5 wt%) met the requirement of oxidation stability at 110 °C determined by the Brazilian specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brasil: Boletim mensal dos combustíveis renováveis. Ministério de Minas e Energia. http://www.mme.gov.br (2017). Accessed 6 April 2017

  2. Gui, M.M., Lee, K.T., Bhatia, S.: Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 33, 1646–1653 (2008). doi:10.1016/j.energy.2008.06.002

    Article  Google Scholar 

  3. Sulistyo, H., Almeida, M.F., Dias, J.M.: Influence of synthetic antioxidants on the oxidation stability of biodiesel produced from acid raw Jatropha curcas oil. Fuel Process. Technol. 132, 133–138 (2015). doi:10.1016/j.fuproc.2014.12.003

    Article  Google Scholar 

  4. Imahara, H., Minami, E., Saka, S.: Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel. 85, 1666–1670 (2006). doi:10.1016/j.fuel.2006.03.003

    Article  Google Scholar 

  5. Santos, A.G.D.: Avaliação da estabilidade térmica e oxidativa do biodiesel de algodão, girassol, dendê e sebo bovino. Universidade Federal do Rio Grande do Norte, Natal (2010)

    Google Scholar 

  6. Rincón, L.E., Jaramillo, J.J., Cardona, C.A.: Comparison of feedstocks and technologies for biodiesel production: an environmental and techno-economic evaluation. Renew. Energy. 69, 479–487 (2014). doi:10.1016/j.renene.2014.03.058

    Article  Google Scholar 

  7. Jakeria, M.R., Fazal, M.A., Haseeb, A.S.M.A.: Influence of different factors on the stability of biodiesel: a review. Renew. Sustain. Energy Rev. 30, 154–163 (2014). doi:10.1016/j.rser.2013.09.024

    Article  Google Scholar 

  8. Knothe, G.: Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88, 669–677 (2007). doi:10.1016/j.fuproc.2007.01.005

    Article  Google Scholar 

  9. McCormick, R.L., Ratcliff, M., Moens, L., Lawrence, R.: Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process. Technol. 88, 651–657 (2007). doi:10.1016/j.fuproc.2007.01.006

    Article  Google Scholar 

  10. Xin, J., Imahara, H., Saka, S.: Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88, 282–286 (2009). doi:10.1016/j.fuel.2008.08.018

    Article  Google Scholar 

  11. Yang, Z., Hollebone, B.P., Wang, Z., Yang, C., Landriault, M.: Factors affecting oxidation stability of commercially available biodiesel products. Fuel Process. Technol. 106, 366–375 (2013). doi:10.1016/j.fuproc.2012.09.001

    Article  Google Scholar 

  12. Mata, T.M., Cardoso, N., Ornelas, M., Neves, S., Caetano, N.S.: Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 25, 4756–4762 (2011). doi:10.1021/ef2010207

    Article  Google Scholar 

  13. Schober, S., Mittelbach, M.: The impact of antioxidants on biodiesel oxidation stability. Eur. J. Lipid Sci. Technol. 106, 382–389 (2004). doi:10.1002/ejlt.200400954

    Article  Google Scholar 

  14. Palozza, P., Rossella, S., Picci, N., Buzzoni, L., Ciliberti, N., Natangelo, A., Manfredini, S., Vertuani, S.: Design, synthesis, and antioxidant potency of novel α-tocopherol analogues in isolated membranes and intact cells. Free Radic. Biol. Med. 44, 1452–1464 (2008). doi:10.1016/j.freeradbiomed.2008.01.001

    Article  Google Scholar 

  15. Santos, F.F.P.: Avaliação de antioxidantes aplicados à produção de biodiesel (2013)

  16. Mazzetto, S.E., Lomonaco, D., Mele, G.: Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Quim. Nova. 32, 732–741 (2009). doi:10.1590/S0100-40422009000300017

    Article  Google Scholar 

  17. Trevisan, M.T.S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., Owen, R.W.: Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 44, 188–197 (2006). doi:10.1016/j.fct.2005.06.012

    Article  Google Scholar 

  18. Lomonaco, D., Maia, F.J.N., Clemente, C.S., Mota, J.P.F., Junior, A.E.C., Mazzetto, S.E.: Thermal studies of new biodiesel antioxidants synthesized from a natural occurring phenolic lipid. Fuel 97, 552–559 (2012). doi:10.1016/j.fuel.2012.01.059

    Article  Google Scholar 

  19. Gedam, P.H., Sampathkumaran, P.S.: Cashew nut shell liquid: extraction, chemistry and applications. Prog. Org. Coat. 14, 115–157 (1986). doi:10.1016/0033-0655(86)80009-7

    Article  Google Scholar 

  20. Attanasi, O., Filippone, P., Grossi, M.: Synthesis of some phosphorus derivatives of cardanol. Phosphorus Sulfur Relat. Elem. 35, 63–65 (1988). doi:10.1080/03086648808079365

    Article  Google Scholar 

  21. Rios, M.A.S.: Síntese e Aplicabilidade de Antioxidantes derivados do Cardanol Hidrogenado. Universidade Federal do Ceará, Ceará (2008)

    Google Scholar 

  22. Lopes, A.A.S.: Síntese de um aditivo tiofosforado a partir do líquido da casca da castanha de caju (Anacardium occidentale Lin) (2005)

  23. Mele, G., Vasapollo, G.: Fine chemicals and new hybrid materials from cardanol. Mini Rev. Org. Chem. 5, 243–253 (2008)

    Article  Google Scholar 

  24. American Oil Chemists’ Society: Official Methods and Recommended Practices of the AOCS. AOCS, Urbana (2009)

    Google Scholar 

  25. Moretto, E., Fett, R.: Tecnologia de óleos e gorduras vegetais na indústria de alimentos. Varela Editora e Livraria Ltda, São Paulo (1998)

    Google Scholar 

  26. Associação Brasileira de Normas Técnicas: ABNT NBR 13573, Amostragem de insumos químicos para curtimento e acabamento de couros. ABNT, Rio de Janeiro (2012)

    Google Scholar 

  27. American Oil Chemists’ Society: Official methods and recommended practices of the American Oil Chemists’ Society. AOCS Official method Cd 8-53. AOCS, Champaign (1990)

    Google Scholar 

  28. ASTM International: Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International, West Conshohocken (2016)

    Google Scholar 

  29. BSI British Standards: Fat and oil derivatives. Fatty acid methyl esters (FAME). In: Determination of oxidation stability (accelerated oxidation test). BSI, London (2003)

    Google Scholar 

  30. ASTM International: ASTM D7042-16e1. Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). ASTM International, West Conshohocken (2016)

    Google Scholar 

  31. Instituto Adolfo Lutz: Normas Analíticas do Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos. Ministério da Saúde, Agência Nacional de Vigilância Sanitária, Brasília (2005)

    Google Scholar 

  32. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Identificação Espectrométrica de Compostos Orgânicos. LTC, Rio de Janeiro (2013)

    Google Scholar 

  33. Silverstein, R.M., Bassler, G.C., Morrill, T.: Spectrometric Identification of Organic Compounds. Wiley, New York (1991)

    Google Scholar 

  34. Araújo, S. V., Rocha, B.S., Luna, F.M.T., Rola, E.M., Azevedo, D.C.S., Cavalcante, C.L.: FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods. Fuel Process. Technol. 92, 1152–1155 (2011). doi:10.1016/j.fuproc.2010.12.026

    Article  Google Scholar 

  35. Pullen, J., Saeed, K.: Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process. Technol. 125, 223–235 (2014). doi:10.1016/j.fuproc.2014.03.032

    Article  Google Scholar 

  36. Cunha, M.E., Krause, L.C., Moraes, M.S.A., Faccini, C.S., Jacques, R.A., Almeida, S.R., Rodrigues, M.R.A., Caramão, E.B.: Beef tallow biodiesel produced in a pilot scale. Fuel Process. Technol. 90, 570–575 (2009). doi:10.1016/j.fuproc.2009.01.001

    Article  Google Scholar 

  37. Tang, H., Wang, A., Salley, S.O., Ng, K.Y.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85, 373–382 (2008). doi:10.1007/s11746-008-1208-z

    Article  Google Scholar 

  38. Liang, C., Schwarzer, K.: Comparison of four accelerated stability methods for lard and tallow with and without antioxidants. J. Am. Oil Chem. Soc. 75, 1441–1443 (1998). doi:10.1007/s11746-998-0196-3

    Article  Google Scholar 

  39. Loh, S.-K., Chew, S.-M., Choo, Y.-M.: Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J. Am. Oil Chem. Soc. 83, 947–952 (2006). doi:10.1007/s11746-006-5051-9

    Article  Google Scholar 

  40. Rodrigues, F.H.A., Feitosa, J.P.A., Ricardo, N.M.P.S., França, F.C.F., Carioca, J.O.B.: Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. J. Braz. Chem. Soc. 17, 265–271 (2006). doi:10.1590/S0103-50532006000200008

    Article  Google Scholar 

  41. Rodrigues, F.H.A., Souza, J.R.R., França, F.C.F., Ricardo, N.M.P.S., Feitosa, J.P.A.: Thermal oligomerisation of cardanol. e-Polymers (2006). doi:10.1515/epoly.2006.6.1.1027

    Google Scholar 

  42. Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950 (2012). doi:10.1016/j.rser.2012.06.024

    Article  Google Scholar 

  43. Agência Nacional do Petróleo Gás Natural e Biocombustíveis: Resolução ANP No. 51-25.11.2015-DO 26.11.2015. http://www.anp.gov.br (2017). Accessed 6 April 2017

Download references

Acknowledgements

The authors acknowledge financial support from CNPq, CAPES and Federal Institute of Education, Science and Technology of Ceará.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Murilo T. Luna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinberg, M.N., Rios, M.A.S., Buarque, H.L.B. et al. Influence of Synthetic and Natural Antioxidants on the Oxidation Stability of Beef Tallow Before Biodiesel Production. Waste Biomass Valor 10, 797–803 (2019). https://doi.org/10.1007/s12649-017-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0120-x

Keywords

Navigation