Skip to main content

Advertisement

Log in

Low-Temperature Catalytic Cracking of Biomass Gasification Tar Over Ni/HZSM-5

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Tar is a major bottleneck for advancing biomass gasification in industrial applications, and therefore it is necessary to develop a clean and efficient tar elimination technology. Experiments of ex-situ real tar catalytic cracking to produce syngas under low temperature condition were proposed in this study with Ni supported by HZSM-5 as catalyst. The effects of various reaction conditions on catalytic performance were investigated, and the mechanisms of tar cracking and coke formation were also discussed by XRD, ICP-MS and BET analysis. Results showed that tar conversion and heat value of gaseous products were 91.52 wt% and 6.40 MJ/Nm3, respectively, when temperature was 500 °C, WHSV was 0.65 h−1 and Ni loading content was 6 wt%. However, coking rate of catalyst was higher than 19.20 wt%. HZSM-5 supported Ni exhibited remarkable tar cracking ability and it could also improve heating value of gaseous products, but coke deactivation of catalyst should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew. Sustain. Energy Rev. 13(3), 594–604 (2009). doi:10.1016/j.rser.2008.01.009

    Article  Google Scholar 

  2. Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12(2), 397–416 (2008). doi:10.1016/j.rser.2006.07.015

    Article  Google Scholar 

  3. Molino, A., Iovane, P., Donatelli, A., Braccio, G., Chianese, S., Musmarra, D.: Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: experimental tests. Chem. Eng. Trans. 32, 337–342 (2013). doi:10.3303/CET1332057

    Google Scholar 

  4. Chianese, S., Fail, S., Binder, M., Rauch, R., Hofbauer, H., Molino, A., Blasi, A., Musmarra, D.: Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal. Today. 277, 182–191 (2016). doi:10.1016/j.cattod.2016.04.005

    Article  Google Scholar 

  5. Anis, S., Zainal, Z.A.: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15(5), 2355–2377 (2011). doi:10.1016/j.rser.2011.02.018

    Article  Google Scholar 

  6. Devi, L., Ptasinski, K., Janssen, F.J.J.G.: A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy. 24(2), 125–140 (2003)

    Article  Google Scholar 

  7. Shen, Y., Yoshikawa, K.: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013). doi:10.1016/j.rser.2012.12.062

    Article  Google Scholar 

  8. Yang, X., Xu, S., Xu, H., Liu, X., Liu, C.: Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catal. Commun. 11(5), 383–386 (2010). doi:10.1016/j.catcom.2009.11.006

    Article  Google Scholar 

  9. Wang, D., Yuan, W., Ji, W.: Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energ. 88(5), 1656–1663 (2011). doi:10.1016/j.apenergy.2010.11.041

    Article  Google Scholar 

  10. Yue, B., Wang, X., Ai, X., Yang, J., Li, L., Lu, X., Ding, W.: Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al2O3 catalysts. Fuel Process. Technol. 91(9), 1098–1104 (2010). doi:10.1016/j.fuproc.2010.03.020

    Article  Google Scholar 

  11. Shen, Y., Yoshikawa, K.: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind. Eng. Chem. Res. 53(27), 10929–10942 (2014). doi:10.1021/ie501843y

    Article  Google Scholar 

  12. Zhang, S., Dong, Q., Zhang, L., Xiong, Y.: High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 191, 17–23 (2015). doi:10.1016/j.biortech.2015.04.114

    Article  Google Scholar 

  13. Zhang, H., Cheng, Y.-T., Vispute, T.P., Xiao, R., Huber, G.W.: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ. Sci. 4(6), 2297 (2011). doi:10.1039/c1ee01230d

    Article  Google Scholar 

  14. Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D.: Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy. 79, 28–37 (2015). doi:10.1016/j.renene.2014.10.013

    Article  Google Scholar 

  15. Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S.A., Gupta, R.B.: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour. Technol. 118, 150–157 (2012). doi:10.1016/j.biortech.2012.05.080

    Article  Google Scholar 

  16. Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manag. 105, 338–354 (2015). doi:10.1016/j.enconman.2015.07.078

    Article  Google Scholar 

  17. Hilten, R.N., Speir, R.A., Kastner, J.R., Mani, S., Das, K.C.: Effect of torrefaction on bio-oil upgrading over HZSM-5. Part 1: product yield, product quality, and catalyst effectiveness for benzene, toluene, ethylbenzene, and xylene production. Energy Fuels. 27(2), 830–843 (2013). doi:10.1021/ef301694x

    Article  Google Scholar 

  18. Iliopoulou, E.F., Stefanidis, S.D., Kalogiannis, K.G., Delimitis, A., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B. 127, 281–290 (2012). doi:10.1016/j.apcatb.2012.08.030

    Article  Google Scholar 

  19. Fan, Y., Cai, Y., Li, X., Yu, N., Yin, H.: Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor. J. Anal. Appl. Pyrolysis. 108, 185–195 (2014). doi:10.1016/j.jaap.2014.05.001

    Article  Google Scholar 

  20. Wang, Y., Wang, J.: Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor. Bioresour. Technol. 214, 700–710 (2016). doi:10.1016/j.biortech.2016.05.027

    Article  Google Scholar 

  21. Chen, G.-Y., Liu, C., Ma, W.-C., Yan, B.-B., Ji, N.: Catalytic cracking of tar from biomass gasification over a HZSM-5-supported Ni–MgO catalyst. Energy Fuels. 29(12), 7969–7974 (2015). doi:10.1021/acs.energyfuels.5b00830

    Article  Google Scholar 

  22. Alipour, S.M.: Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chin. J. Catal. 37(5), 671–680 (2016). doi:10.1016/s1872-2067(15)61091-9

    Article  Google Scholar 

  23. Huang, X., Aihemaitijiang, D., Xiao, W.-D.: Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst: a kinetic study. Chem. Eng. J. 286, 150–164 (2016). doi:10.1016/j.cej.2015.10.045

    Article  Google Scholar 

  24. García-Labiano, F., Gayán, P., de Diego, L.F., Abad, A., Mendiara, T., Adánez, J., Nacken, M., Heidenreich, S.: Tar abatement in a fixed bed catalytic filter candle during biomass gasification in a dual fluidized bed. Appl. Catal. B 188, 198–206 (2016). doi:10.1016/j.apcatb.2016.02.005

    Article  Google Scholar 

  25. Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., Ollero, P.: Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chem. Eng. J. 228, 1223–1233 (2013). doi:10.1016/j.cej.2013.03.130

    Article  Google Scholar 

  26. Zhang, Y., Chen, P., Lou, H.: In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM‑5. J. Energy Chem. 25(3), 427–433 (2016). doi:10.1016/j.jechem.2016.03.014

    Article  Google Scholar 

  27. Zou, X., Chen, T., Liu, H., Zhang, P., Chen, D., Zhu, C.: Catalytic cracking of toluene over hematite derived from thermally treated natural limonite. Fuel. 177, 180–189 (2016). doi:10.1016/j.fuel.2016.02.094

    Article  Google Scholar 

  28. Anis, S., Zainal, Z.A., Bakar, M.Z.: Thermocatalytic treatment of biomass tar model compounds via radio frequency. Bioresour. Technol. 136, 117–125 (2013). doi:10.1016/j.biortech.2013.02.049

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by project in the National Science & Technology Pillar Program (2015BAD21B06) and the project in the Natural Science Foundation of China (51676138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Li, J., Liu, C. et al. Low-Temperature Catalytic Cracking of Biomass Gasification Tar Over Ni/HZSM-5. Waste Biomass Valor 10, 1013–1020 (2019). https://doi.org/10.1007/s12649-017-0107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0107-7

Keywords

Profiles

  1. Jingang Yao