Abstract
Tar is a major bottleneck for advancing biomass gasification in industrial applications, and therefore it is necessary to develop a clean and efficient tar elimination technology. Experiments of ex-situ real tar catalytic cracking to produce syngas under low temperature condition were proposed in this study with Ni supported by HZSM-5 as catalyst. The effects of various reaction conditions on catalytic performance were investigated, and the mechanisms of tar cracking and coke formation were also discussed by XRD, ICP-MS and BET analysis. Results showed that tar conversion and heat value of gaseous products were 91.52 wt% and 6.40 MJ/Nm3, respectively, when temperature was 500 °C, WHSV was 0.65 h−1 and Ni loading content was 6 wt%. However, coking rate of catalyst was higher than 19.20 wt%. HZSM-5 supported Ni exhibited remarkable tar cracking ability and it could also improve heating value of gaseous products, but coke deactivation of catalyst should be further investigated.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew. Sustain. Energy Rev. 13(3), 594–604 (2009). doi:10.1016/j.rser.2008.01.009
Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12(2), 397–416 (2008). doi:10.1016/j.rser.2006.07.015
Molino, A., Iovane, P., Donatelli, A., Braccio, G., Chianese, S., Musmarra, D.: Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: experimental tests. Chem. Eng. Trans. 32, 337–342 (2013). doi:10.3303/CET1332057
Chianese, S., Fail, S., Binder, M., Rauch, R., Hofbauer, H., Molino, A., Blasi, A., Musmarra, D.: Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal. Today. 277, 182–191 (2016). doi:10.1016/j.cattod.2016.04.005
Anis, S., Zainal, Z.A.: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15(5), 2355–2377 (2011). doi:10.1016/j.rser.2011.02.018
Devi, L., Ptasinski, K., Janssen, F.J.J.G.: A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy. 24(2), 125–140 (2003)
Shen, Y., Yoshikawa, K.: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013). doi:10.1016/j.rser.2012.12.062
Yang, X., Xu, S., Xu, H., Liu, X., Liu, C.: Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catal. Commun. 11(5), 383–386 (2010). doi:10.1016/j.catcom.2009.11.006
Wang, D., Yuan, W., Ji, W.: Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energ. 88(5), 1656–1663 (2011). doi:10.1016/j.apenergy.2010.11.041
Yue, B., Wang, X., Ai, X., Yang, J., Li, L., Lu, X., Ding, W.: Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al2O3 catalysts. Fuel Process. Technol. 91(9), 1098–1104 (2010). doi:10.1016/j.fuproc.2010.03.020
Shen, Y., Yoshikawa, K.: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind. Eng. Chem. Res. 53(27), 10929–10942 (2014). doi:10.1021/ie501843y
Zhang, S., Dong, Q., Zhang, L., Xiong, Y.: High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 191, 17–23 (2015). doi:10.1016/j.biortech.2015.04.114
Zhang, H., Cheng, Y.-T., Vispute, T.P., Xiao, R., Huber, G.W.: Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ. Sci. 4(6), 2297 (2011). doi:10.1039/c1ee01230d
Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D.: Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy. 79, 28–37 (2015). doi:10.1016/j.renene.2014.10.013
Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S.A., Gupta, R.B.: Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour. Technol. 118, 150–157 (2012). doi:10.1016/j.biortech.2012.05.080
Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manag. 105, 338–354 (2015). doi:10.1016/j.enconman.2015.07.078
Hilten, R.N., Speir, R.A., Kastner, J.R., Mani, S., Das, K.C.: Effect of torrefaction on bio-oil upgrading over HZSM-5. Part 1: product yield, product quality, and catalyst effectiveness for benzene, toluene, ethylbenzene, and xylene production. Energy Fuels. 27(2), 830–843 (2013). doi:10.1021/ef301694x
Iliopoulou, E.F., Stefanidis, S.D., Kalogiannis, K.G., Delimitis, A., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B. 127, 281–290 (2012). doi:10.1016/j.apcatb.2012.08.030
Fan, Y., Cai, Y., Li, X., Yu, N., Yin, H.: Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor. J. Anal. Appl. Pyrolysis. 108, 185–195 (2014). doi:10.1016/j.jaap.2014.05.001
Wang, Y., Wang, J.: Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor. Bioresour. Technol. 214, 700–710 (2016). doi:10.1016/j.biortech.2016.05.027
Chen, G.-Y., Liu, C., Ma, W.-C., Yan, B.-B., Ji, N.: Catalytic cracking of tar from biomass gasification over a HZSM-5-supported Ni–MgO catalyst. Energy Fuels. 29(12), 7969–7974 (2015). doi:10.1021/acs.energyfuels.5b00830
Alipour, S.M.: Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chin. J. Catal. 37(5), 671–680 (2016). doi:10.1016/s1872-2067(15)61091-9
Huang, X., Aihemaitijiang, D., Xiao, W.-D.: Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst: a kinetic study. Chem. Eng. J. 286, 150–164 (2016). doi:10.1016/j.cej.2015.10.045
García-Labiano, F., Gayán, P., de Diego, L.F., Abad, A., Mendiara, T., Adánez, J., Nacken, M., Heidenreich, S.: Tar abatement in a fixed bed catalytic filter candle during biomass gasification in a dual fluidized bed. Appl. Catal. B 188, 198–206 (2016). doi:10.1016/j.apcatb.2016.02.005
Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., Ollero, P.: Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chem. Eng. J. 228, 1223–1233 (2013). doi:10.1016/j.cej.2013.03.130
Zhang, Y., Chen, P., Lou, H.: In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM‑5. J. Energy Chem. 25(3), 427–433 (2016). doi:10.1016/j.jechem.2016.03.014
Zou, X., Chen, T., Liu, H., Zhang, P., Chen, D., Zhu, C.: Catalytic cracking of toluene over hematite derived from thermally treated natural limonite. Fuel. 177, 180–189 (2016). doi:10.1016/j.fuel.2016.02.094
Anis, S., Zainal, Z.A., Bakar, M.Z.: Thermocatalytic treatment of biomass tar model compounds via radio frequency. Bioresour. Technol. 136, 117–125 (2013). doi:10.1016/j.biortech.2013.02.049
Acknowledgements
This work is financially supported by project in the National Science & Technology Pillar Program (2015BAD21B06) and the project in the Natural Science Foundation of China (51676138).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, G., Li, J., Liu, C. et al. Low-Temperature Catalytic Cracking of Biomass Gasification Tar Over Ni/HZSM-5. Waste Biomass Valor 10, 1013–1020 (2019). https://doi.org/10.1007/s12649-017-0107-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-017-0107-7

