Production and Nutritional Performance of Carotenoid-Producing Photosynthetic Bacterium Rhodopseudomonas faecalis PA2 Grown in Domestic Wastewater Intended for Animal Feed Production

Abstract

Due to the high price of animal feed additive, a number of studies have been carried out to find an alternative diet with comparable nutritional profile and cost competitiveness. The photosynthetic bacterium Rhodopseudomonas faecalis PA2 was recently proposed as a new carotenoid producer with relatively high biomass production but the mass production using a cheap substrate remains unclear. In this study, Rps. faecalis PA2 was cultivated in domestic wastewater. The optimum light intensity and agitation speed were 4000 lux and 150 rpm, respectively. Batch cultivation in a photo-bioreactor showed that specific growth rate was 1.61/day with the maximum biomass production of 33.9 g/L. Carotenoid yield, carotenoid production rate and carotenoid productivity were found to be 7.2 mg/g, 74.3 and 40.9 mg/L day, respectively. The nutritional profile of the freeze-dried biomass contained 64.8% protein and 10.6% lipid. The contents of essential amino acids accounted for approximately 72.6% of the whole protein content which is comparable with dietary amino acids required for penaeid shrimp. The amounts of unsaturated fatty acids were higher than saturated fatty acids consisting of polyunsaturated fatty acid including omega-3 (alpha-linolenic acid [18, n − 3]) and omega-6 fatty acids. Cultivation of this bacterium in domestic wastewater is considered a promising technology for microbial feed additive production with price competitiveness. Moreover, biochemical composition of Rps. faecalis grown in domestic wastewater is first reported in this study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Nasseri, A.T., Rasoul-Amini, S., Morowvat, M.H., Ghasemi, Y.: Single protein: production and process. Am. J. Food Technol. 6, 103–116 (2011)

    Article  Google Scholar 

  2. 2.

    Calozzi, P., Buccioni, A., Minieri, S., Pushparaj, B., Piccardi, R., Ena, A., Pintucci, C.: Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour. Technol. 101, 3115–3120 (2010)

    Article  Google Scholar 

  3. 3.

    Kim, J.K., Lee, B.: Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aquac. Eng. 23, 281–293 (2000)

    Article  Google Scholar 

  4. 4.

    Tian, Y., Machado, P.A., Fu, H., Hahm, T.S., Wei, C., Lo, Y.M.: Photosynthetic bioconversion of coenzyme Q10 using agrowaste generated from tobacco biorefinery for nonsmoking applications: a review. J. Food Drug Anal. 20, 173–178 (2012)

    Google Scholar 

  5. 5.

    Wang, G., Grammel, H., Abou-Aisha, K., Sagesser, R., Ghosh, R.: High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 78, 7205–7215 (2012)

    Article  Google Scholar 

  6. 6.

    Brown, A.C., McGraw, K.J., Clotfelter, E.D.: Dietary carotenoids increase yellow nonpigment coloration of female convict cichlids (Amantitlania nigrofasciata). Physiol. Biochem. Zool. 86, 312–322 (2013)

    Article  Google Scholar 

  7. 7.

    Takaichi, S., Maoka, T., Sasikala, C., Ramana, C.V., Shimada, K.: Genus specific unusual carotenoids in purple bacteria, Phaeospirillum and Roseospira: structures and biosyntheses. Curr. Microbiol. 63, 75–80 (2011)

    Article  Google Scholar 

  8. 8.

    Zhou, Q., Zhang, P., Zhang, G.: Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effect of light intensity. Bioresour. Technol. 171, 330–335 (2014)

    Article  Google Scholar 

  9. 9.

    Zhou, Q., Zhang, P., Zhang, G.: Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources. Bioresour. Technol. 179, 505–509 (2015)

    Article  Google Scholar 

  10. 10.

    Loo, P.L., Vikineswary, S., Chong, V.C.: Nutritional value and production of three species of purple non-sulfur bacteria grown in palm oil mill effluent and their application in rotifer culture. Aquac. Nutr. 19, 895–907 (2013)

    Article  Google Scholar 

  11. 11.

    Saejung, C., Thammaratana, T.: Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. Environ. Technol. 37, 3055–3061 (2016)

    Article  Google Scholar 

  12. 12.

    Chiu, K., Liu, W.: Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (Oreochromis mossambicus × Oreochromis niloticus). Aquaculture 418–419, 32–38 (2014)

    Article  Google Scholar 

  13. 13.

    Fang, L.C., Li, Y., Cheng, P., Deng, J., Jiang, L.L., Huang, H., Zheng, J.S., Wei, H.: Characterization of Rhodopseudomonas palustris strain 2C as a potential probiotic. APMIS 120, 743–749 (2012)

    Article  Google Scholar 

  14. 14.

    Loo, P.L., Chong, V.C., Vikineswary, S.: Rhodovulum sulfidophilum, a phototrophic bacterium, grown in palm oil mill effluent improves the larval survival of marble goby Oxyeleotris marmorata (Bleeker). Aquac. Res. 44, 495–507 (2013)

    Article  Google Scholar 

  15. 15.

    Wu, P., Li, J., Wang, Y., Tong, Q., Liu, W., Du, C., Li, N.: Improving the growth of Rubrivivax gelatinosus cultivated in sewage environment. Bioprocess Biosyst. Eng. 38, 79–84 (2015)

    Article  Google Scholar 

  16. 16.

    Zhang, D., Yang, H., Huang, Z., Zhang, W., Liu, S.J.: Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int. J. Syst. Evol. Microbiol. 52, 2055–2060 (2002)

    Google Scholar 

  17. 17.

    Hong, H.Y., Liu, B., Ding, J., Nan, J., Xie, G., Zhao, L., Chen, M., Ren, N.: Enhanced photo-hydrogen production of Rhodopseudomonas faecalis RLD-53 by EDTA addition. Int. J. Hydrogen Energy. 37, 8277–8281 (2012)

    Article  Google Scholar 

  18. 18.

    Liu, B., Xie, G., Guo, W., Ding, J., Ren, N.Q.: Optimization of photo-hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53. Nat. Resour. 2, 1–7 (2011)

    Google Scholar 

  19. 19.

    Xie, G., Liu, B., Xing, D., Nan, J., Ding, J., Ren, H.Y., Guo, W., Ren, N.Q.: Photo- hydrogen production by Rhodopseudomonas faecalis RLD-53 immobilized on the surface of modified activated carbon fibers. RSC Adv. 2, 2225–2228 (2012)

    Article  Google Scholar 

  20. 20.

    Saejung, C., Apaiwong, P.: Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioprocess Eng. 20, 701–707 (2015)

    Article  Google Scholar 

  21. 21.

    Association of Official Analytical Chemists (AOAC): Offcial Methods of Analysis. 16th edn. AOAC Arlington, Virginia (1995)

    Google Scholar 

  22. 22.

    Association of Offcial Analytical Chemists (AOAC): Official Methods of Analysis, 24th edn. AOAC Arlington, Virginia (2000)

    Google Scholar 

  23. 23.

    Association of Offcial Analytical Chemists (AOAC): Official Methods of Analysis, 24th edn. AOAC Arlington, Virginia (2005)

    Google Scholar 

  24. 24.

    Hirayama, O.: Lipids and lipoprotein complex in photosynthetic tissue: 4 lipid and pigments of photosynthetic bacteria. Agric. Biol. Chem. 32, 34–41 (1968)

    Google Scholar 

  25. 25.

    Cheirsilp, B., Torpee, S.: Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110, 510–516 (2012)

    Article  Google Scholar 

  26. 26.

    Couso, I., Vila, M., Vigara, J., Cordero, B.F., Vargas, M.A., Guez, H.R., Leo, R.: Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Eur. J. Phycol. 47, 223–232 (2012)

    Article  Google Scholar 

  27. 27.

    Hosseini Tafreshi, A., Shariati, M.: Dunaliella biotechnology: methods and applications. J. Appl. Microbiol. 107, 14–35 (2009)

    Article  Google Scholar 

  28. 28.

    Kuo, F.S., Chien, Y.H., Chen, C.J.: Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol. 113, 315–318 (2012)

    Article  Google Scholar 

  29. 29.

    Li, Q., Brendemuhl, J.H., Jeong, K.C., Badinga, L.: Effects of dietary omega-3 polyunsaturated fatty acids on growth and immune response of weanling pigs. J. Anim. Sci. Technol. 56, 7 (2014)

    Article  Google Scholar 

  30. 30.

    Tandori, J., Hideg, E., Nagy, L., Maroti, P., Vass, I.: Photoinhibition of carotenoidless reaction centers from Rhodobacter sphaeroides by visible light. Effects on protein structure and electron transport. Photosynth. Res. 70, 175–184 (2001)

    Article  Google Scholar 

  31. 31.

    Masuda, T., Polle, J.E.W., Melis, A.: Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga Dunaliella salina from irradiance stress. Plant Physiol. 128, 603–614 (2002)

    Article  Google Scholar 

  32. 32.

    Brotosudarmo, T.H.P., Limantara, L., Heriyantoa, H., Prihastyanti, M.N.U.: Adaptation of the photosynthetic unit of purple bacteria to changes of light illumination intensities. Procedia Chem. 14, 414–421 (2015)

    Article  Google Scholar 

  33. 33.

    Nunkaew, T., Kantachote, D., Nitoda, T., Kanzaki, H.: The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electron. J. Biotechnol. (2012). doi:10.2225/vol15-issue6-fulltext-8

    Google Scholar 

  34. 34.

    Sangkharak, K., Prasertsan, P.: Nutrient optimization for production of polyhydroxybutyrate from halotolerant photosynthetic bacteria cultivated under aerobic-dark condition. Electron. J. Biotechnol. (2008). doi:10.2225/vol11-issue3-fulltext-2

    Google Scholar 

  35. 35.

    Liu, S., Zhang, G., Li, X., Wu, P., Zhang, J.: Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. J. Environ. Sci. 33, 21–28 (2015)

    Article  Google Scholar 

  36. 36.

    Mitra, D., Leeuwen, J.H., Lamsal, B.: Heterotrophic/mixotrophic cultivation of leaginous Chlorella vulgaris on industrial co-products. Algal Res. 1, 40–48 (2012)

    Article  Google Scholar 

  37. 37.

    Vrati, S.: Single cell protein production by photosynthetic bacteria grown on the clarified effluents of biogas plant. Appl. Microbiol. Biotechnol. 19, 199–202 (1984)

    Article  Google Scholar 

  38. 38.

    Ponsano, E.H.G., Lacava, P.M., Pinto, M.F.: Chemical composition of Rhodocyclus gelatinosus biomass produced in poultry slaughterhouse wastewater. Braz. Arch. Biol. Technol. 46, 143–147 (2003)

    Article  Google Scholar 

  39. 39.

    Kobayashi, M., Kobayashi, M.: Waste remediation and treatment using anoxygenic phototrophic bacteria. In: Blackenship, R.E., Madigan, M.T., Bauer, C.E. (eds.) Anoxygenic Photosynthetic Bacteria, pp. 1269–1282. Kluwer Academic Publishers, Amsterdams (1995)

    Google Scholar 

  40. 40.

    Noparatnaraporn, N., Nagai, S.: Selection of Rhodobactor sphaeroides P47 as useful source of single cell protein. J. Gen. Appl. Microbiol. 32, 351–359 (1986)

    Article  Google Scholar 

  41. 41.

    Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007)

    Article  Google Scholar 

  42. 42.

    Tacon, A.G.J.: Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp. Argent Laboratories Press, Washington (1990)

    Google Scholar 

  43. 43.

    Oura, E.: Biomass from carbohydrates. In: Dellweg, H. (ed.) Biotechnology, pp. 3–42. Verlag Chemie GmbH, Weinheim (1983)

    Google Scholar 

  44. 44.

    Gao, Y., Li, D., Liu, Y.: Production of single cell protein from soy molasses using Candida tropicalis. Ann. Microbiol. 62, 1165–1172 (2012)

    Article  Google Scholar 

  45. 45.

    Zhao, G., Zhang, W., Zhang, G.: Production of single cell protein using waste capsicum powder produced during capsanthin extraction. Lett. Appl. Microbiol. 50, 187–191 (2010)

    Article  Google Scholar 

  46. 46.

    Ashokkumar, G.V., Sujatha, R.K., Thiruneelakandan, G., Rashmi, V.: Diversity of purple non sulfur bacteria (PNSB) from shrimp ponds in Nagai coastal region, South East coast of India. Microbiology 1, 59–61 (2015)

    Google Scholar 

  47. 47.

    FAO: Amino Acid Content of Foods and Biological Data on Proteins. Vol. 24, FAO Nutritional Studies, Rome (1980)

    Google Scholar 

  48. 48.

    Syadati, S.A., Mirzaei-Aghsaghali, A., Fathi, H., Davuodi, J.: Importance essential fatty acids (n-6 and n-3) in animal nutrition: I: Ruminant. Ann. Biol. Res. 3, 1161–1176 (2012)

    Google Scholar 

  49. 49.

    Gonzalez-Esquerra, R., Leeson, S.: Alternatives for enrichment of eggs and chicken meat with omega-3 fatty acids. Can. J. Anim. Sci. 81, 295–305 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund (TRF) and the Office of the Higher Education Commission (Grant No. MRG6080233) and Khon Kaen University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chewapat Saejung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saejung, C., Ampornpat, W. Production and Nutritional Performance of Carotenoid-Producing Photosynthetic Bacterium Rhodopseudomonas faecalis PA2 Grown in Domestic Wastewater Intended for Animal Feed Production. Waste Biomass Valor 10, 299–310 (2019). https://doi.org/10.1007/s12649-017-0070-3

Download citation

Keywords

  • Photosynthetic bacteria
  • Amino acid composition
  • Fatty acid content
  • Light intensity
  • Carotenoids
  • Wastewater