Advertisement

Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis Sativa L.)

Abstract

Landfill leachate is one of the major sources of pollutions discharged into the environment. It is composed from a complex mixture of chemicals and handling typically involves treatment either on-site or at a wastewater treatment plants but phytoremediation is a promising method. The aim of this work was to evaluate the potential of agronomic plant species with high annual biomass yield (Cannabis sativa L.) for toxicity removal from landfill leachate. Raw leachate collected from the pond of untreated leachate at sanitary landfill in Czech Republic was used in the study. The hemp cultivation experiments were performed in the beginning of 2017 under laboratory conditions using three hemp cultivars registered in the European Union: Tiborszállási (Hungary), Bialobrzeska (Poland) and Monoica (Hungary). The seeds were used for modified standard mustard germination test. The germination of hemp cultivars was tested using the hydroponics medium supplemented with leachate 25, 50, 75, 90 and 100%. The control seeds were growing on untreated nutrient medium under the same condition. The nature of germination of seeds was studied. Based on the obtained results, it can be concluded that the tested samples of leachate were toxic for hemp cultivars (C. sativa L.). Growth inhibition (%) at the studied samples ranged from −6.48 to 75.78%.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Singh, A., Prasad, S.M.: Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 12, 353–366 (2015)

  2. 2.

    Chandra, R., Yadav, S., Yadav, S.: Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 98, 134–145 (2017)

  3. 3.

    Wyszkowski, M., Radziemska, M.: Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J. Toxicol. Environ. Health A 73, 1274–1282 (2010)

  4. 4.

    Koda, E., Sieczka, A., Osiński, P.: Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253 (2016)

  5. 5.

    Vaverková, M.D., Adamcová, D., Radziemska, M., Voběrková, S., Mazur, Z., Zloch, J.: Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. Waste Biomass Valori. (2017). doi:10.1007/s12649-017-001

  6. 6.

    Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A., Osiński, P.: Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water. 8, 470 (2016)

  7. 7.

    Baun, D.L., Christensen, T.H.: Speciation of heavy metals in landfill leachate: a review. Waste Manag. Res. 22, 3–23 (2004)

  8. 8.

    Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M., Vaverková, M.D.: Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 185, 1011–1018 (2017)

  9. 9.

    Benskin, J.P., Li, B., Ikonomou, M.G., Grace, J.R., Li, L.Y.: Per- and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environ. Sci. Technol. 46, 11532–11540 (2012)

  10. 10.

    Benskin, J.P., Ikonomou, M.G., Woudneh, M.B., Cosgrove, J.R.: Rapid characterization of perfluoroalkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1247, 165–170 (2012)

  11. 11.

    Yan, H., Cousins, I.T., Zhang, C., Zhou, Q.: Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. 524–525, 23–31 (2015)

  12. 12.

    Fuertes, I., Gómez-Lavín, S., Elizalde, M.P., Urtiaga, A.: Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere. 168, 399–407 (2017)

  13. 13.

    EPA: A citizen’s guide to phytoremediation. EPA 542-F-98-011. Technology Innovation Office, US Environmental Protection Agency, Dallas (1998)

  14. 14.

    Radziemska, M., Gusiatin, Z.M., Bilgin, A.: Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 102, 490–500 (2017)

  15. 15.

    Pandey, V.C., Bajpai, O., Singh, N.: Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54, 58–73 (2016)

  16. 16.

    Linger, P., Ostwald, A., Haensler, J.: Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol. Plant. 49, 567–576 (2005)

  17. 17.

    Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I.: Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865 (1997)

  18. 18.

    Kos, B., Grčman, H., Leštan, D.: Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ. 49, 548–553 (2003)

  19. 19.

    Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P.: EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102, 307–318 (2004)

  20. 20.

    Hajiboland, R.: An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ. 51, 156–164 (2005)

  21. 21.

    Li, H., Wang, Q., Cui, Y., Dong, Y., Christie, P.: Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study. Sci. Total Environ. 339, 179–187 (2005)

  22. 22.

    Grispen, V.M.J., Nelissen, H.J.M., Verkleij, J.A.C.: Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ. Pollut. 144, 77–83 (2006)

  23. 23.

    Komárek, M., Tlustoš, P., Száková, J., Chrastný, J., Ettler, V.: The use of maize and poplar in chelant enhanced phytoextraction of lead from contaminated agricultural soil. Chemosphere. 67, 640–651 (2007)

  24. 24.

    Neugschwandtner, R.W., Tlustoš, P., Komárek, M., Száková, J.: Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144, 446–454 (2008)

  25. 25.

    Salentijn, E.M.J., Zhang, Q., Amaducci, S., Yang, M., Trindade, L.M.: New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 68, 32–41 (2014)

  26. 26.

    Chaohua, Ch., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, Ch., Xinbo, G., Dingxiang, P., Jianguang, S.: A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops and Prod. 83, 61–65 (2016)

  27. 27.

    Shi, G., Liu, C., Cui, M., Ma, Y., Cai, Q.: Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173 (2012)

  28. 28.

    Slusarkiewicz-Jarzina, A., Ponitka, A., Kaczmarek, Z.: Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol. Craco. Series Bot. 47, 145–151 (2005)

  29. 29.

    Papadopoulou, E., Bikiaris, D., Chrysafis, K., Wladyka-Przybylak, M., Wesolek, D., Mankowski, J., Kolodziej, J., Baraniecki, P., Bujnowicz, K., Gronberg, V.: Value-added industrial products from bast fiber crops. Ind. Crops Prod. 68, 116–125 (2015)

  30. 30.

    Adamcová, D., Vaverková, M.D.: Does composting of biodegradable municipal solid waste on the landfill body make sense? J. Ecol. Eng. 17, 30–37 (2016)

  31. 31.

    Voběrková, S., Vaverková, M.D., Burešová, A., Adamcová, D., Vršanská, M., Kynický, J., Brtnický, M., Adam, V.: Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 61, 157–164 (2017)

  32. 32.

    Adamcová, D., Vaverková, M.D., Břoušková, E.: The toxicity of two types of sewage sludge form wastewater treatment plant for plants. J. Ecol. Eng. 17, 33–37 (2016)

  33. 33.

    Hou, C., Lu, G., Zhao, L., Yin, P., Zhu, L.: Estrogenicity assessment of membrane concentrates from landfill leachate treated by the UV-Fenton process using a human breast carcinoma cell line. Chemosphere. 180, 192–200 (2017)

  34. 34.

    Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., He, R.: Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag. 33(11), 2277–2286 (2013)

  35. 35.

    Slack, R.J., Gronow, J.R., Voulvoulis, N.: Household hazardous waste in municipal landfills: contaminants in leachate. Sci. Total Environ. 337, 119–137 (2005)

  36. 36.

    Matejczyk, M., Płaza, G.A., Nałęcz-Jawecki, G., Ulfig, K., Markowska-Szczupak, A.: Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82(7), 1017–1023 (2011)

  37. 37.

    Ghosh, P., Thakur, I.S., Kaushik, A.: Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol. Environ. Saf. 141, 259–270 (2017)

  38. 38.

    USEPA: Ecological effects test guidelines: seed germination/root elongation toxicity test. US Environmental Protection Agency, Environmental Research Laboratory, Washington (1996)

  39. 39.

    Novak, L.J., Holtze, K.E.: Overview of toxicity reduction and identification evaluations for use with small-scale tests. In: Blaise, C., Férard, J.F. (eds.) Small-scale freshwater toxicity investigations, pp. 169–213. Springer, Dordrecht (2005)

  40. 40.

    Bakare, A.A., Mosuro, A.A., Osibanjo, O.: Effect of stimulated leachate on chromosomes and mitosis in roots of Allium cepa L. J. Environ. Biol. 21, 251–260 (2000)

  41. 41.

    Mor, S., Kaur, K., Khaiwal, R.: Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. J. Environ. Biol. 34, 1083–1087 (2013)

  42. 42.

    Suliasih, B.A., Othman, M.S., Heng, L.Y., Salmijah, S.: Toxicity identification evaluation of landfill leachate taking a multispecies approach. Waste Manag. Environ. V. 140, 311–322 (2010)

  43. 43.

    Sang, N., Li, G.K.: Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 560(2), 159–165 (2004)

  44. 44.

    Sang, N., Han, M., Li, G.K.: Landfill leachate affects metabolic responses of Zea mays L. seedings. Waste Manag. 30(5), 856–862 (2010)

  45. 45.

    Srivastava, A.K., Kumar, R.R., Singh, A. K.: Cell cycle stage specific application of municipal landfill leachates to assess the genotoxicity in root meristem cells of barley (Hordeum vulgare). Environ. Sci. Pollut. Res. 21(24), 13979–13986 (2014)

  46. 46.

    Žaltauskaitė, J., Čypaitė, A.: Assessment of landfill leachate toxicity using higher plants. Environ. Res. Eng. Manag. 46(4), 42–47 (2008)

  47. 47.

    Olivero-Verbel, J., Padilla-Bottet, C., De la Rosa, O.: Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicol. Environ. Saf. 70, 294–299 (2008)

  48. 48.

    Pablos, M.V., Martini, F., Fernandez, C., Babin, M.M., Herraez, I., Miranda, J., Martinez, J., Carbonell, G., San-Segundo, L., Garcia-Hortiguela, P., Tarazona, J.V.: Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manag. 31, 1841–1847 (2011)

  49. 49.

    Baker, A., Brooks, R.: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery. 1, 81–126 (1989)

  50. 50.

    Ahmad, R., Tehsin, Z., Tanvir Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., Khan, S.A.: Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water. 44, 195–201 (2016)

  51. 51.

    Adler, A., Karacic, A., Weih, M.: Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil. 305, 189–206 (2008)

  52. 52.

    Sinha, S., Gupta, A.K., Bhatt, K., Pandey, K., Rai, U.N., Singh, K.P.: Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ. Monit. Assess. 115, 1–22 (2006)

  53. 53.

    Barbosa, B., Costa, J., Fernando, A.L., Papazoglou, E.G.: Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68, 17–23 (2015)

  54. 54.

    Davison, L., Pont, D., Bolton, K., Headley, T.: Dealing with nitrogen in subtropical Australia: seven case studies in the diffusion of ecotechnological innovation. Ecol. Eng. 28, 213–223 (2006)

  55. 55.

    Nivala, J., Hoos, M.B., Cross, C., Wallace, S., Parkin, G.: Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci. Total Environ. 380, 19–27 (2007)

Download references

Acknowledgements

The research was financially supported by the IGA FA MENDELU No. TP 5/2017. Authors thank Mr. Hermes Villafaña (Language Coach) for the linguistic comments on manuscript.

Author information

Correspondence to Magdalena Daria Vaverková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaverková, M.D., Zloch, J., Adamcová, D. et al. Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis Sativa L.). Waste Biomass Valor 10, 369–376 (2019) doi:10.1007/s12649-017-0058-z

Download citation

Keywords

  • Phytotoxicity
  • Toxicity
  • Landfill leachate
  • Cannabis sativa L.