Skip to main content
Log in

A Review of the Primary By-product (Nejayote) of the Nixtamalization During Maize Processing: Potential Reuses

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The production of nixtamalized products worldwide has been increased over past decades. The first pre-treatment applied to maize is the well-known Nixtamalization procedure, which produces large quantities of its primary by-product called ‘Nejayote’; this by-product is commonly discarded into the urbanized sewage without any additional treatment. Recently, Nejayote has attracted attention due to its high organic load based on high content of organic (arabinoxylans, phenolic compounds, sugars, fibers) and inorganic compounds (calcium). Thus, this by-product may have potential for value-added processing and utilization, which can be alternatives, that simultaneous hold the promise of increased economic benefit for masa producers as well as decreased potential pollution for the environment. The goal of this paper is to provide a critical review of reusing this primary by-product. State-of-the-art of developments in the field are chronologically reported and described. Particular attention is paid to experimental results reported for the reclamation of its high-added value compounds that have been identified as the potential approach concerning on the utilization of the by-product. The recovered components have demonstrated biological activities that increase their potential exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AXs:

Arabinoxylans

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

MF:

Microfiltration

NWs:

Nixtamalization wastewaters

NF:

Nanofiltration

UF:

Ultrafiltration

References

  1. Gwirtz, J.A., García-Casal, M.N.: Processing maize flour and corn meal food products. Ann. NY. Acad. Sci. 1312, 66–75 (2014)

    Article  Google Scholar 

  2. Campechano Carrera, E.M., Figueroa Cárdenas, J.D., Arámbula Villa, G., Martínez Flores, H.E., Jiménez Sandoval, S.J., Luna Bárcenas, J.G.: New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. Int. J. Food Sci. Technol. 47, 564–571 (2012)

    Article  Google Scholar 

  3. Valderrama- Bravo, C., Gutíerrez-Cortez, E., Contreras-Padilla, M., Rojas-Molina, I., Mosquera, J.C., Rojas-Molina, A., Beristain, F., Rodríguez-García, M.E.: Constant pressure filtration of lime water (Nejayote) used to cook kernels in maize processing. J. Food Eng. 110, 478–486 (2012)

    Article  Google Scholar 

  4. Rojas-Molina, I., Gutiérrez, E., Cortés-Acevedo, M.E., Falcón, A., Bressani, R., Rojas, A., Ibarra, C., Pons-Hernández, J.L., Guzmán-Maldonado, S.H., Cornejo-Villegas, A., Rodríguez, M.E.: Analysis of quality protein changes in nixtamalized QPM flours as a function of the steeping time. Cereal Chem. 85, 409–416 (2008)

    Article  Google Scholar 

  5. Rojas-Molina, I., Gutiérrez, E., Rojas, A., Cortés-Álvarez, M., Campos-Solís, L., Hernández-Urbiola, M., Arjona, J.L., Cornejo, A., Rodríguez-García, M.: Effect of temperature and steeping time on calcium and phosphorus content in nixtamalized corn flours obtained by the traditional nixtamalization process. Cereal Chem. 86(5), 516–521 (2009)

    Article  Google Scholar 

  6. Gutiérrez, E., Rojas-Molina, I., Pons-Hernández, J.L., Guzmán, H., Aguas-Ángel, B., Arenas, J., Fernández, P., Palacios-Fonseca, A., Herrera, G., Rodríguez, M.E.: Study of calcium ion diffusion in nixtamalized quality protein maize as a function of cooking temperature. Cereal Chem. 84, 186–194 (2007)

    Article  Google Scholar 

  7. Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J., Gardea, A., Martínez-López, A., Guerrero, V.: Maize processing wastewater arabinoxylans: gelling capability and cross-linking content. Food Chem. 115, 1286–1290 (2009)

    Article  Google Scholar 

  8. Salmeron-Alcocer, A., Rodriguez-Mendoza, N., Pineda-Santiago, V., Cristiani-Urbina, E., Juarez-Ramirez, C., Ruiz-Ordaz, N., Galindez-Mayer, J.: Aerobic treatment of maize-processing wastewater (nejayote) in a single-stream multi-stage bioreactor. J. Environ. Eng. Sci. 2, 401–406 (2003)

    Article  Google Scholar 

  9. Acosta-Estrada, B.A., Serna-Saldívar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of feruloyl putrescines from wastewater (Nejayote) of lime-cooked white maize (Zea mays). J. Cereal Sci. 64, 23–28 (2015)

    Article  Google Scholar 

  10. Ayala-Soto, F.E., Serna-Saldivar, S.O., García-Lara, S., Pérez-Carrillo, E.: Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocoll. 35, 471–475 (2014)

    Article  Google Scholar 

  11. Acosta-Estrada, B.A., Lazo-Vélez, M.A., Nava-Valdez, Y., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O.: Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Cereal Sci. 60, 264–269 (2014)

    Article  Google Scholar 

  12. Gutiérrez-Uribe, J., Rojas-García, C., García-Lara, S., Serna-Saldivar, S.: Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize processed into masa for tortillas. J. Cereal Sci. 52, 410–416 (2010)

    Article  Google Scholar 

  13. Lopez-Martinez, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.H., Parkin, K.L., Garcia, H.S.: Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 42, 1187–1192 (2009)

    Article  Google Scholar 

  14. Rosentrater, K.A.: A review of corn masa processing residues: generation, properties, and potential utilization. Waste Manag. 26(3), 284–292 (2006)

    Article  Google Scholar 

  15. Civit, E., Duran de Bazúa, C., Engelmann, G., González, S. & Hartmann, L.: Anaerobic treatment of maize processing waste water (Nejayote) in a packed bed reactor cascade. Environ. Technol. Lett. 5, 89–96 (1984)

    Article  Google Scholar 

  16. Pedroza de Brenes, R., Duran de Bazua, C.: RBC characteristics for nejayote aerobic treatment. Environ. Technol. Lett. 8(1), 579–588 (1987)

    Article  Google Scholar 

  17. Luna-Parabello, V.M., Aladro-Lubel, M.A., Durán de Bazúa, C.: Biomonitoring of wastewaters in treatment plants using ciliates. J. Ind. Microbiol. Biotechnol. 17, 62–68 (1996)

    Google Scholar 

  18. Pedroza-Islas, R., & Durán de Bazúa, C.: Aerobic treatment of maize-processing wastewater in a 50-liter rotating biological reactor. Biol. Wastes 32(1), 17–27 (1990)

    Article  Google Scholar 

  19. Ferreira- Rolón, A., Ramírez-Romero, G., Ramírez-Vives, F.: Granular sludges methanogenic activity increase due to CO2 bubbling calcium precipitation over Nejayote. Rev. Mex. Ing. Quim. 13(2), 517–525 (2014)

    Google Scholar 

  20. Gutíerrez-Macías, P., Montañez-Barragán, B., Barragán-Huerta, B.E.: A review of agro-food waste transformation into feedstock for use in fermentation. Fresen. Environ. Bull. 24, 3703–3716 (2015)

    Google Scholar 

  21. Valderrama-Bravo, C., Gutiérrez-Cortez, E., Contreras-Padilla, M., Oaxaca-Luna, A., Del Real Lopez, A., Espinosa-Arbelaez, D.G., Rodríguez-García, M.E.: Physico-mechanic treatment of nixtamalization by- product (Nejayote). CyTA J. Food 11, 75–83 (2013)

    Article  Google Scholar 

  22. García-Zamora, J.L., Sánchez-González, M., Lozano, J.A., Jáuregui, J., Zayas, T., Santacruz, V., Hernández, F., Torres, E.: Enzymatic treatment of wastewater from the corn tortilla industry using chitosan as an adsorbent reduces the chemical oxygen demand and ferulic acid content. Process Biochem. 50, 125–133 (2015)

    Article  Google Scholar 

  23. Meraz, K.A.S., Vargas, S.M.P., Maldonado, J.T.L., Bravo, J.M.C., Guzman, M.T.O., Maldonado, E.A.L.: Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: evaluation through zeta potential measurements. Chem. Eng. J. 284, 536–542 (2016)

    Article  Google Scholar 

  24. Lefebvre, O., Moletta, R.: Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 40, 3671–3682 (2006)

    Article  Google Scholar 

  25. Stevenson, R.A.A., Sarma, S.S.S., Nandini, S.: Population dynamics of Brachionus calyciflorus (Rotifera: Brachionidae) in waste water from food-processing industry in Mexico. Rev. Biol. Trop. 46(3), 595–600 (1998)

    Google Scholar 

  26. Velasco-Martinez, M., Angulo, O., Vazquez-Couturier, D.L., Arroyo-Lara, A., Monroy-Rivera, J.A.: Effect of dried solids of nejayote on broiler growth. Poult. Sci. 76(11), 1531–1534 (1997)

    Article  Google Scholar 

  27. González, R., Reguera, E., Figueroa, J.M., Martínez, J.L.: Study of the influence of Nejayote and other additives on the cohesive strength and electric properties of carbon black agglomerates. J. Appl. Polym. Sci. 90, 3965–3972 (2003)

    Article  Google Scholar 

  28. Nogueira-Terrones, H., Herman-Lara, E., García-Alvardo, M.A, Monroy-Rivera, J.A.: Drying kinetics and sorption isotherms of the Nejayote. Drying Technol. 22, 2173–2182 (2004)

    Article  Google Scholar 

  29. Díaz-Montes, E., Castro-Muñoz, R., Yáñez-Fernández, J.: An overview of Nejayote, a nixtamalization by product. Ingeniería Agrícola y Biosistemas 8(2), 41–60 (2016)

    Article  Google Scholar 

  30. Kratky, L., Jirout, T.: Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 3, 391–399 (2011)

    Article  Google Scholar 

  31. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014)

    Article  Google Scholar 

  32. Shahidi, F.: Functional foods: their role in health promotion and disease prevention. J. Food Sci. 69(5), R146–R149 (2004)

    Article  Google Scholar 

  33. Paz-Samaniego, R., Carvajal-Millan, E., Brown-Bojorquez, F., Rascón-Chu, A., López-Franco, Y. L., Sotelo-Cruz, N., Lizardi-Mendoza, J.: Gelation of arabinoxylans from maize wastewater—effect of alkaline hydrolysis conditions on the gel rheology and microstructure. Wastewater Treatment Eng. (2015)

  34. Carvajal-Millán, E.: An alternative to convert residues of corn “nixtamalización” process as a high-value product. Tecnociencia Chihuahua 1(2), 1–5 (2007)

    Google Scholar 

  35. Berlanga-Reyes, C., Carvajal-Millan, E., Niño-Medina, G., Rascón-Chu, A., Ramírez-Wong, B., Magaña-Barajas, E.: Low-value maize and wheat by-products as a source of ferulated arabinoxylans. García Einschlag, F.S. (eds.) Waste Water - Treatment and Reutilization, InTech, Rijeka (2011)

    Chapter  Google Scholar 

  36. Galanakis, C.M.: Recovery of high-added value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012)

    Article  Google Scholar 

  37. Galanakis, C. M.: Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91, 575–579 (2013)

    Article  Google Scholar 

  38. Cassano, A., Conidi, C., Galanakis, C.M., Castro-Muñoz, R.: Recovery of polyphenols from olive mill wastewaters by membrane operations. In: Figoli, A., Cassano, A., Basile, A. (eds.) Membrane technologies for biorefining. Elsevier, London (2016)

    Google Scholar 

  39. Conidi, C., Cassano, A., Drioli, E.: Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874 (2012)

    Article  Google Scholar 

  40. Cassano, A., Conidi, C., Ruby Figueroa, R., Castro-Muñoz, R.: A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int. J. Mol. Sci. 16, 8968–8987 (2015)

    Article  Google Scholar 

  41. Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. 454, 322–329 (2014)

    Article  Google Scholar 

  42. Conidi, C., Cassano, A., Garcia-Castello, E.: Valorization of artichoke wastewaters by integrated membrane process. Water Res. 48, 363–374 (2014)

    Article  Google Scholar 

  43. Castro-Muñoz, R., Orozco-Álvarez, C., Cerón-Montes, G.I., Yáñez-Fernández, J.: Characterization of the microfiltration process for the treatment of nixtamalization wastewaters. Ingeniería Agricola y Biosistemas 7(1), 23–34 (2015)

    Article  Google Scholar 

  44. Castro-Muñoz, R., Cerón-Montes, G.I, Barragán-Huerta, B.E., Yáñez-Fernández, J.: Recovery of carbohydrates from nixtamalization wastewaters (Nejayote) by ultrafiltration. Rev. Mex. Ing. Quim. 14(3), 735–744 (2015)

    Google Scholar 

  45. Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of Nixtamalization wastewaters by integrated membrane process. Food Bioprod. Process. 95, 7–18 (2015)

    Article  Google Scholar 

  46. Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valori. 7, 1167–1176 (2016)

    Article  Google Scholar 

  47. Castro-Muñoz, R., Yáñez-Fernández, J., Fíla, V.: Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food Chem. 213, 753–762 (2016)

    Article  Google Scholar 

  48. Galanakis, C.M.: Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015)

    Article  Google Scholar 

  49. Crespo, J. G., & Brazinha, C.: Membrane processing: natural antioxidants from winemaking by-products. Filtr. Separat. 47, 32–35 (2010)

    Article  Google Scholar 

  50. Ochando-Pulido, J.M., & Martinez-Ferez, A.: On the recent use of membrane technology for olive mill wastewater purification. Membranes 5, 513–531 (2015)

    Article  Google Scholar 

  51. Al-Amoudi, A., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4–28 (2007)

    Article  Google Scholar 

  52. Sanchez-Gonzalez, M., Blanco-Gamez, A., Escalante, A., Valladares, A.G., Olvera, C., Parra, R.: Isolation and characterization of new facultative alkaliphilic Bacillus flexus strains from maize processing waste water (Nejayote). Lett. Appl. Microbiol. 52(4), 413–419 (2011)

    Article  Google Scholar 

  53. Ramírez-Romero, G., Reyes-Velazquez, M., Cruz-Guerrero, A.: Study of Nejayote as culture medium for probiotics and production of bacteriocins. Rev. Mex. Ing. Quim. 12(3), 463–471 (2013)

    Google Scholar 

  54. Salazar-Magallon, J.A., Hernandez-Velazquez, V.M., Alvear-Garcia, A., Arenas-Sosa, I., Peña-Chora, G.: Evaluation of industrial by-products for the production of Bacillus thuringiensis strain GP139 and the pathogenicity when applied to Bemisia tabaci nymphs. Bull. Insectol. 68(1), 103–109 (2015)

    Google Scholar 

  55. Mathew, S., Abraham, T.E.: Bioconversions of ferulic acid and hydroxycinnamic acid. Crit. Rev. Microbiol. 32, 115–125 (2006)

    Article  Google Scholar 

  56. Retes-Mantilla, R.F., Torres-Mancera, M.T., Lugardo-Bravo, M.T.: Economic benefits for the food and beverage industry in Mexico with the use of vanillin obtained from nejayote. Custos e Agronegocio 11(3), 86–105 (2015)

    Google Scholar 

  57. El-Shourbagy, G.A., El-Zahar, K.M.: Oxidative stability of ghee as affected by natural antioxidants extracted from food processing wastes. Ann. Agric. Sci. 59(2), 213–220 (2014)

    Google Scholar 

  58. Rojas-García, C., García-Lara, S., Serna-Saldivar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of free and bound phenolics associated to steep waters (Nejayote) obtained after nixtamalization of different maize types. Plant Foods Hum. Nutr. 67(1), 94–99 (2012)

    Article  Google Scholar 

  59. Valderrama-Bravo, C., Domínguez-Pacheco, F., Hernández-Aguilar, C., Flores-Saldaña, N., Villagran-Ortíz, P., Pérez-Reyes, C., Sanchez-Hernández, G., Oaxaca-Luna, A.: Effect of nixtamalized maize with lime water (Nejayote) on rheological and microbiological properties of Masa. J. Food Process. Preserv. 41, 1–9 (2016). doi:10.1111/jfpp.12748

    Google Scholar 

  60. Galanakis, C.M., Castro-Muñoz, R., Cassano, A., Conidi, C.: Recovery of high-added-value compounds from food waste by membrane technology. In: Figoli, A., Cassano, A., Basile, A., Membrane technologies for biorefining. Elsevier, London (2016)

    Google Scholar 

  61. Galanakis, C.M., Schieber, A.: Recovery and utilization of valuable compounds from food processing by-products. Food Res. Int. 65, 299–300 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering – EUDIME (FPA No 2011-0014, Edition V, http://eudime.unical.it). Part of this work was supported by the Operational Program Prague – Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability“(NPU I LO1613) (MSMT-43760/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Castro-Muñoz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Muñoz, R., Fíla, V. & Durán-Páramo, E. A Review of the Primary By-product (Nejayote) of the Nixtamalization During Maize Processing: Potential Reuses. Waste Biomass Valor 10, 13–22 (2019). https://doi.org/10.1007/s12649-017-0029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0029-4

Keywords

Navigation