Skip to main content

Advertisement

Log in

A Mini Review of the Techno-environmental Sustainability of Biological Processes for the Treatment of High Organic Content Industrial Wastewater Streams

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Industrial wastewater contains complex and slowly biodegradable compounds often ineffectively treated by conventional activated sludge (CAS) systems. Alternatively, advanced anaerobic technologies are implemented. The current study reviews different potential anaerobic schemes, factors influencing their final performance and optimum combinations of operational/design parameters. Anaerobic membrane bioreactors, upflow anaerobic sludge blanket reactors, expanded granular sludge beds, anaerobic hybrid reactors and inverse fluidized bed reactors are discussed. Their major advantages include: low energy requirements, energy recovery through biogas generation and high organic load removal. pH = 7, operation in a mesophilic environment and a hydraulic retention time long enough to enable anaerobic digestion in economically accepted reactor volumes are conditions that optimize the performance of anaerobic configurations. The evaluation additionally considers environmental aspects. The life cycle assessment of anaerobic industrial wastewater treatment reveals its positive environmental effect in terms of greenhouse gases emissions. Methane (a greenhouse gas) primarily contained in the biogas, despite being produced during anaerobic digestion, is utilized for energy production (heating, electricity) instead of being emitted to the atmosphere. Finally, anaerobic wastewater treatment is analyzed as part of the European Commission Innovation Deal that aims at converting conventional wastewater treatment plants to water resource recovery facilities able to combine sustainable wastewater treatment and water reuse.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABR:

Anaerobic baffled reactor

AH:

Anaerobic hybrid

AnMBR:

Anaerobic membrane bioreactor

AS:

Activated sludge

CAS:

Conventional activated sludge

COD:

Chemical oxygen demand

d:

Days

h:

Hours

EGSB:

Expanded granular sludge bed

GHG:

Greenhouse gas

HRT:

Hydraulic retention time

IFBR:

Inverse fluidized bed reactor

LCA:

Life cycle assessment

OLR:

Organic loading rate

SBR:

Sequencing batch reactor

SRT:

Sludge retention time

UASB:

Upflow anaerobic sludge blanket reactor

References

  1. Baban, A.: Biodegradability assessment and treatability of high strength complex industrial park wastewater. Clean Soil Air Water 41 (10), 976–983 (2013)

    Google Scholar 

  2. Lesjean, B., Huisjes, E.H.: Survey of the European MBR market: trends and perspectives. Desalination. 231, 71–81 (2008)

    Article  Google Scholar 

  3. Huisjes, E.H., Colombel, K., Lesjean, B.: The European MBR Market: specificities and future trends. MBR-Network Workshop, 31st March–1st April 2009, Berlin, Germany (2009)

  4. Shakerkhatibi, M., Monajemi, P., Jafarzadeh, M. T., Mokhtari, S.A., Farshchian, M.R.: Feasibility study on EO/EG wastewater treatment using pilot scale SBR. Int. J. Environ. Res. Public Health. 7(1), 195–204 (2013)

    Google Scholar 

  5. Gude, V.G.: Wastewater treatment in microbial fuel cells–an overview. J. Clean. Prod. 122, 287–307 (2016)

    Article  Google Scholar 

  6. Ozgun, H., Dereli, R.K., Ersahin, M.E., Kinaci, C., Spanjers, H., van Lier, J.B.: A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Sep. Purif. Technol. 118, 89–104 (2013)

    Article  Google Scholar 

  7. Dvorak, L., Gómez, M., Dolina, J., Cernín, A.: Anaerobic membrane bioreactors-a mini review with emphasis on industrial wastewater treatment: applications, limitations and perspectives. Desalin. Water Treat. 66, 1–15 (2015)

    Google Scholar 

  8. Chan, C.H., Lim, P.E.: Evaluation of sequencing batch reactor performance with aerated and unaerated fill periods in treating phenol-containing wastewater. Bioresour. Technol. 98, 1333–1338 (2007)

    Article  Google Scholar 

  9. Desloover, J., De Clippeleir, H., Boeck, P., Du Laing, G., Colsen, J., Verstraete, W., Vlaeminck, S.E: Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res. 45, 2811–2821 (2011)

    Article  Google Scholar 

  10. Bialek, K., Cysneiros, D., O’Flaherty, V.: Hydrolysis, acidification and methanogenesis during low-temperature anaerobic digestion of dilute dairy wastewater in an inverted fluidised bioreactor. Appl. Microbiol. Biot. 98, 8737–8750 (2014)

    Article  Google Scholar 

  11. Jaouad, Y., Villain, M., Ouazzani, N., Mandi, L., Marrot, B.: Biodegradation of olive mill wastewater in a membrane bioreactor: acclimation of the biomass and constraints. Desalin. Water Treat. 57, 8109–8118 (2016)

    Article  Google Scholar 

  12. Queiroz, L.M., Nascimento, I.O.C., de Melo, S.A.B.V., Kalid, R.A.: Aerobic, anaerobic treatability and biogas production potential of a wastewater from a biodiesel industry. Waste Biomass Valor. 7, 691–702 (2016)

    Article  Google Scholar 

  13. Nikolaidou, E., Iossifidou, M., Tataki, V., Eftaxias, A., Aivasidis, A., Diamantis, V.: Energy recovery and treatment of winery wastes by a compact anaerobic digester. Waste Biomass Valor. 7, 799–805 (2016)

    Article  Google Scholar 

  14. Alexandropoulou, M., Antonopoulou, G., Lyberatos, G., Food industry waste’s exploitation via anaerobic digestion and fermentative hydrogen production in an up-flow column reactor. Waste Biomass Valor. 7, 711–723 (2016)

    Article  Google Scholar 

  15. Santos, A., Ma, W., Judd, S.J.: Membrane bioreactors: Two decades of research and implementation. Desalination. 273, 148–154 (2011)

    Article  Google Scholar 

  16. Krzeminski, P., van der Graaf, J.H.J.M., van Lier, J.B.: Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Sci. Technol. 65(2), 380–392 (2012)

    Article  Google Scholar 

  17. Hu, A.Y., Stuckey, D.C.: Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor. J. Environ. Eng. 132(2), 190–198 (2006)

    Article  Google Scholar 

  18. Gil, J.A., Tua, L., Rueda, A., Montano, B., Rodriguez, M., Prats, D.: Monitoring and analysis of the energy cost of an MBR. Desalination. 250, 997–1001 (2010)

    Article  Google Scholar 

  19. Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., Zhang, Y.: A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination. 314, 169–188 (2013)

    Article  Google Scholar 

  20. Heinke, G.W., Smith, D.W., Finch, G.R.: Guidelines for the planning and design of wastewater lagoon systems in cold climates. Can. J. Civil Eng. 18, 556–567 (1991)

    Article  Google Scholar 

  21. Rodriguez, R., Espada, J.J., Pariente, M.I., Melero, J.A., Martinez, F., Molina, R.: Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. J. Clean. Prod. 124, 21–29 (2016)

    Article  Google Scholar 

  22. Mahvi, A.H.: Sequencing batch reactor: a promising technology in wastewater treatment. Iran. J. Environ. Health Sci. Eng. 5(2), 79–90 (2008)

    Google Scholar 

  23. Chan, Y.J., Chong, M.F., Law, C.L.: Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). J. Environ. Manag. 91, 1738–1746 (2010)

    Article  Google Scholar 

  24. Sirianuntapiboon, S., Chairattanawan, K.: Comparison of sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems on treatment textile wastewater containing basic dye. Desalin. Water Treat. 57(56) 1–17 (2016)

    Article  Google Scholar 

  25. Jiang, Y., Wang, H., Shang, Y., Yang, K.: Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor. Bioresour. Technol. 207, 422–429 (2016)

    Article  Google Scholar 

  26. Rajab, A.R., Salim, M.R., Sohaili, J., Anuar, A.N., Salmiati, Lakkaboyana, S.K.: Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater. Chem. Eng. J. 313, 967–974 (2017)

    Article  Google Scholar 

  27. Xiao, Y., Xu, H.Y., Xie, H.M., Yang, Z.H., Zeng, G.M.: Comparison of the treatment for isopropyl alcohol wastewater from silicon solar cell industry using SBR and SBBR. Int. J. Environ. Sci. Technol. 12, 2381–2388 (2015)

    Article  Google Scholar 

  28. Dereli, R.K., Ersahin, M.E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., van Lier, J.B.: Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresour. Technol. 122, 160–170 (2012)

    Article  Google Scholar 

  29. Metcalf & Eddy: Wastewater engineering: treatment and reuse. In: Tchobanoglous, G., Burton, F.L., Stensel, H.D. (eds.) McGraw-Hill Education, New York (2003)

    Google Scholar 

  30. Dabi, N.: Comparison of suspended growth and attached growth wastewater treatment process: a case study of wastewater treatment plant at MNIT, Jaipur, Rajasthan, India. Euro. J. Adv. Eng. Technol. 2(2), 102–105 (2015)

    Google Scholar 

  31. Liao; B.Q., Kraemer, J.T., Bagley, D.M.: Anaerobic membrane bioreactors: applications and research directions. Crit. Rev. Env. Sci. Technol. 36(6), 489–530 (2006)

    Article  Google Scholar 

  32. Alvarado-Lassman, A., Sandoval-Ramos, A., Flores-Altamirano, M.G., Vallejo-Cantu, N.A., Mendez-Contreras, J.M.: Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles. Water Environ. Res. 82(5), 387–391 (2010)

    Article  Google Scholar 

  33. Feng, Y., Lu, B., Jiang, Y., Chen, Y., Shen, S.: Anaerobic degradation of purified terephthalic acid wastewater using a novel, rapid mass-transfer circulating fluidized bed. Water Sci. Technol. 65(11), 1988–1993 (2012)

    Article  Google Scholar 

  34. Tawfik, A., El-Kamah, H.: Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR). Environ. Technol. 33(4), 429–436 (2012)

    Article  Google Scholar 

  35. Wang, W., Yang, Q., Zheng, S., Wu, D.: Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment. Bioresour. Technol. 149, 292–300 (2013)

    Article  Google Scholar 

  36. Duan, W., Ronen, A., Valle de Leon, J., Dudchenko, A., Yao, S., Corbala-Delgado, J., Yan, A., Matsumoto, M., Jassby, D.: Treating anaerobic sequencing batch reactor effluent with electrically conducting ultrafiltration and nanofiltration membranes for fouling control. J. Membr. Sci. 504, 104–112 (2016)

    Article  Google Scholar 

  37. Chang, S.: Anaerobic membrane bioreactors (AnMBR) for wastewater treatment. Adv. Chem. Eng. Sci. 4, 56–61 (2014)

    Article  Google Scholar 

  38. Christian, S., Grant, S., McCarthy, P., Wilson, D., Mills, D.: The first two years of full-scale anaerobic membrane bioreactor (AnMBR) operation treating high-strength industrial wastewater. Water Pract. Technol. 6(2), 4019–4033 (2011)

    Article  Google Scholar 

  39. Van Zyl, P.J., Wentzel, M.C., Ekama, G.A., Riedel, K.J.: Design and start-up of a high rate anaerobic membrane bioreactor for the treatment of a low pH, high strength, dissolved organic waste water. Water Sci. Technol. 57(2), 291–295 (2008)

    Article  Google Scholar 

  40. Zayen, A., Mnif, S., Aloui, F., Fki, F., Loukil, S., Bouaziz, M., Sayadi, S.: Anaerobic membrane bioreactor for the treatment of leachates from jebel chakir discharge in Tunisia. J. Hazard. Mater. 177(1–3), 918–923 (2010)

    Article  Google Scholar 

  41. Wave #5: Insights from Veolia Water Technologies-Creating more value for the Food & Beverage market. Veolia Publications (2016)

  42. Speece R.E.: Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville (1996)

    Google Scholar 

  43. Huang, Z., Ong, S.L., Ng, H.Y.: Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Res. 45(2), 705–713 (2011)

    Article  Google Scholar 

  44. Smith, A.L., Skerlos, S.J., Raskin, L.: Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 47(4), 1655–1665 (2013)

    Article  Google Scholar 

  45. Trzcinski, A.P., Stuckey, D.C.: Inorganic fouling of an anaerobic membrane bioreactor treating leachate from the organic fraction of municipal solid waste (OFMSW) and a polishing aerobic membrane bioreactor. Bioresour. Technol. 204, 17–25 (2016)

    Article  Google Scholar 

  46. Ersahin, M.E., Tao, Y., Ozgun, H., Spanjers, H., van Lier, J.B.: Characteristics and role of dynamic membrane layer in anaerobic membrane bioreactors. Biotechnol. Bioeng. 113, 761–771 (2016)

    Article  Google Scholar 

  47. Choo, K.H., Kang, I.J., Yoon, S.H., Park, H., Kim, J.H., Adiya, S., Lee, C.H.: Approaches to membrane fouling control in anaerobic membrane bioreactors. Water Sci. Technol. 41, 363–371 (2000)

    Google Scholar 

  48. Dutch Water Sector: Mars commissions methane wastewater treatment plant at world’s largest chocolate factory in Veghel, the Netherlands. Posted: 28th October 2014. http://www.dutchwatersector.com/news-events/news/12127-mars-commissions-memthane-wastewater-treatment-plant-at-world-s-largest.html. Accessed: 27 Mar 2017

  49. Pretel, R., Robles, A., Ruano, M.V., Seco, A., Ferrera, J.: The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Sep. Purif. Technol. 126, 30–38 (2016)

    Article  Google Scholar 

  50. Ho, J., Sung, S.: Anaerobic membrane bioreactor treatment of synthetic municipal wastewater at ambient temperature. Water Environ. Res. 81, 922–928 (2009)

    Article  Google Scholar 

  51. Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L., Bae, J.: Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ. Sci. Technol. 45, 576–581 (2011)

    Article  Google Scholar 

  52. He, Y., Xu, P., Li, C., Zhang, B.: High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Res. 39, 4110–4118 (2005)

    Article  Google Scholar 

  53. Padmasiri, S.I., Zhang, J., Fitch, M., Norddahl, B., Morgenroth, E., Raskin, L.: Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res. 41, 134–144 (2007)

    Article  Google Scholar 

  54. Martinez-Sosa, D., Helmreich, B., Horn, H.: Anaerobic submerged membrane bioreactor (AnSMBR) treating low-strength wastewater under psychrophilic temperature conditions. Process Biochem. 47, 792–798 (2012)

    Article  Google Scholar 

  55. Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F., Peña, M.: Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresour. Technol. 185, 225–233 (2015)

    Article  Google Scholar 

  56. O’Flaherty, V., Collins, G., Mahony, T.: The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev. Environ. Sci. Biotechnol. 5, 39–55 (2006)

    Article  Google Scholar 

  57. Van Haandel, A., Kato, M.T., Cavalcanti, P.F.F., Florencio, L.: Anaerobic reactor design concepts for the treatment of domestic wastewater. Rev. Environ. Sci. Biotechnol. 5, 21–38 (2006)

    Article  Google Scholar 

  58. European Commission: Research & Innovation Deals. Last update: 13th February 2017. http://ec.europa.eu/research/innovation-deals/index.cfm. Accessed 6 Apr 2017

  59. Ersu, C.B., Ong, S.K., Arslankaya, E., Lee, Y.W.: Impact of solids residence time on biological nutrient removal performance of membrane bioreactor. Water Res. 44, 3192–3202 (2010)

    Article  Google Scholar 

  60. Abegglen, C., Ospelt, M., Siegrist, H.: Biological nutrient removal in a small-scale MBR treating household wastewater. Water Res. 42, 338–346 (2008)

    Article  Google Scholar 

  61. Bekir Ersu, C., Ong, S.K., Arslankaya, E., Brown, P.: Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor. Water Res. 42, 1651–1663 (2008)

    Article  Google Scholar 

  62. Yasar, A., Tabinda, A.B.: Anaerobic treatment of industrial wastewater by UASB reactor integrated with chemical oxidation processes: an overview. Pol. J. Environ. Stud. 19(5), 1051–1061 (2010)

    Google Scholar 

  63. Lew, B., Tarre, S., Belavski, M., Green, M.: UASB reactor for domestic wastewater treatment at low temperatures: a comparison between a classical UASB and hybrid UASB-filter reactor. Water Sci. Technol. 49, 295–301 (2004)

    Google Scholar 

  64. Sanchez, A., Buntner, D., Garrido, J.M.: Impact of methanogenic pre-treatment on the performance of an aerobic MBR system. Water Res. 47, 1229–1236 (2013)

    Article  Google Scholar 

  65. Dias, D.F.C., Possmoser-Nascimento, T.E., Rodrigues, V.A.J., von Sperling, M.: Overall performance evaluation of shallow maturation ponds in series treating UASB reactor effluent: ten years of intensive monitoring of asystem in Brazil. Ecol. Eng. 71, 206–214 (2014)

    Article  Google Scholar 

  66. Lim, S.J., Kim, T.H.: Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenerg. 60, 189–202 (2014)

    Article  Google Scholar 

  67. Djalma Nunes Ferraz Júnior, A., Koyama, M.H., de Araújo Júnior, M.M., Zaiat, M.: Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew. Energ. 89, 245–252 (2016)

    Article  Google Scholar 

  68. Sivakumar, R., Sekaran V.: Comparative study of performance evaluation of UASB reactor for treating synthetic dairy effluent at psychrophilic and mesophilic temperatures. Nat. Env. Poll. Technol. 14(3), 679–684 (2015)

    Google Scholar 

  69. Yu, H.Q., Fang, H.H.P., Tay, J.H.: Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminium chloride. Chemosphere. 44, 31–36 (2001)

    Article  Google Scholar 

  70. Cao, Y., Zhang, M., Shan, S.: Effect of two-added powdered bamboo-charcoal on sludge granulation of UASB reactor. Trans. Chin. Soc. Agr. Eng. 26, 246–250 (2010)

    Google Scholar 

  71. Ince, O.: Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. 32, 2707–2713 (1998)

    Article  Google Scholar 

  72. Shin, H.S., Song, Y.C., Lee, C.Y.: Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res. 35, 3441–3447 (2001)

    Article  Google Scholar 

  73. Moawad, A., Mahmoud, U.F., El-Khateeb, M.A., El-Molla, E.: Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination. 242, 325–335 (2009)

    Article  Google Scholar 

  74. Qiu, G., Song, Y., Zeng, P., Duan, L., Xiao, S.: Combination of upflow anaerobic sludge blanket (UASB) and membrane bioreactor (MBR) for berberine reduction from wastewater and the effects of berberine on bacterial community dynamics. J. Hazard. Mater. 246–247, 34–43 (2013)

    Article  Google Scholar 

  75. Kato, M.T., Field, J.A., Kleerebezem, R., Lettinga, G.: Treatment of low strength soluble wastewater in UASB reactors. J. Ferment. Bioeng. 77(6), 679–686 (1994)

    Article  Google Scholar 

  76. Petropoulos, E., Cuff, G., Huete, E., Garcia, G., Wade, M., Spera, D., Aloisio, L., Rochard, J., Torres, A., Weichgrebe, D.: Investigating the feasibility and the limits of high rate anaerobic winery wastewater treatment using a hybrid-EGSB bio-reactor. Process Saf. Environ. 102, 107–118 (2016)

    Article  Google Scholar 

  77. Rajeshwari, K.V., Balakrishnan, M., Kansal, A., Lata, K., Kishore, V.V.N: State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sust. Energ. Rev. 4, 135–156 (2000)

    Article  Google Scholar 

  78. Ince, B., Cetecioglu, Z., Celikkol, S., Ince, O.: The microbial diversity, methane production, operational routine of an anaerobic reactor treating maize processing wastewater. Water Pract. Technol. 7(2), 1–8 (2012)

    Article  Google Scholar 

  79. Warmenhoven, J.W., Spanjers, H.: TOC based control of anaerobic reactor treating wastewater from a fruit juice packaging factory. Water Pract. Technol. 6(2), 1–2 (2011)

    Article  Google Scholar 

  80. Wahab, M.A., Habouzit, F., Bernet, N., Steyer, J.P., Jedidi, N., Escudie, R.: Sequential operation of a hybrid anaerobic reactor using a lignocellulosic biomass as biofilm support. Bioresour. Technol. 172, 150–155 (2014)

    Article  Google Scholar 

  81. Li, H.T., Li, Y.F.: Performance of a hybrid anaerobic baffled reactor (HABR) treating brewery wastewater’, 2010 International Conference on Mechanic Automation and Control Engineering MACE 2010, 26th–28th June 2010, Wuhan, China (2010)

  82. Mokhtarani, N., Bayatfard, A., Mokhtarani, B.: Full scale performance of compost’s leachate treatment by biological anaerobic reactors. Waste Manag. Res. 30(5), 524–529 (2012)

    Article  Google Scholar 

  83. Wu, M., Wilson, F., Tay, J.H.: Influence of media-packing ratio on performance of anaerobic hybrid reactors. Bioresour. Technol. 71, 151–157 (2000)

    Article  Google Scholar 

  84. Arnaiz, C., Buffiere, P., Elmaleh, S., Lebrato, J., Moletta, R.: Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors. Environ. Technol. 24(11), 1431–1443 (2003)

    Article  Google Scholar 

  85. Alvarado-Lassman, A., Rustrian, E., Garcia-Alvarado, M.A., Rodriguez-Jimenez, G.C., Houbron, E.: Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Bioresour. Technol. 99, 3009–3015 (2008)

    Article  Google Scholar 

  86. Water Utility Pathways in a Circular Economy: Charting a Course for Sustainability. http://www.iwa-network.org/water-utility-pathways-circular-economy-charting-course-sustainability/. Accessed: 24 May 2017

  87. Choo, K.H., Lee, C.H.: Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. 30(8), 1771–1780 (1996)

    Article  Google Scholar 

  88. Anderson, G.K., Kasapgil, B., Ince, O.: Microbial kinetics of a membrane anaerobic reactor system. Environ. Technol. 17, 449–464 (1996)

    Article  Google Scholar 

  89. Poh, P.E., Chong, M.F.: Upflow anaerobic sludge blanket-hollow centred packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment. Biomass Bioenerg. 67, 231–242 (2014)

    Article  Google Scholar 

  90. Kim, T.G., Yun, J., Cho, K.S.: The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl. Microbiol. Biotechnol. 99, 8271–8283 (2015)

    Article  Google Scholar 

  91. Xing, W., Zuo, J-e., Dai, N., Cheng, J., Li, J.: Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 °C. J. Appl. Microbiol. 107, 848–857 (2009)

    Article  Google Scholar 

  92. Li, C., Tabassum, S., Zhang, Z.: An advanced anaerobic expanded granular sludge bed (AnaEG) for the treatment of coal gasification wastewater. RSC Adv. 4, 57580–57586 (2014)

    Article  Google Scholar 

  93. Speece, R.E.: Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17(9), 416–427 (1983)

    Article  Google Scholar 

  94. Food and Agriculture Organization of the United Nations: Wastewater treatment and use in agriculture. Available at: http://www.fao.org/docrep/t0551e/t0551e05.htm. Accessed: 29 May 2017

  95. Wu, S., Qi, Y., Fan, C., Dai, B., Huang, J., Zhou, W., He, S., Gao, L.: Improvement of anaerobic biological treatment effect by catalytic micro-electrolysis for monensin production wastewater. Chem. Eng. J. 296, 260–267 (2016)

    Article  Google Scholar 

  96. Zhou, W., Imai, T., Ukita, M., Li, F., Yuasa, A.: Effect of loading rate on the granulation process and granular activity in a bench scale UASB reactor. Bioresour. Technol. 98, 1386–1392 (2007)

    Article  Google Scholar 

  97. Saleh, M.M.A., Mahmood, U.F.: Anaerobic Digestion Technology for Industrial Wastewater Treatment. 8th International Water Technology Conference, IWTC8 2004, 26th–28th March 2004, Alexandria, Egypt (2004)

  98. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)

    Article  Google Scholar 

  99. Gao, W.J.J., Lin, H.J., Leung, K.T., Liao, B.Q.: Influence of elevated pH shocks on the performance of a submerged anaerobic membrane bioreactor. Process Biochem. 45, 1279–1287 (2010)

    Article  Google Scholar 

  100. Skouteris, G., Hermosilla, D., Lopez, P., Negro, C., Blanco, A.: Anaerobic membrane bioreactors for wastewater treatment: a review. Chem. Eng. J. 198–199, 138–148 (2012)

    Article  Google Scholar 

  101. Osman, R.M.: Anaerobic fermentation of industrial wastewater (review article). OJCES 1(1), 50–78 (2014)

    Article  MathSciNet  Google Scholar 

  102. Lettinga, G., Rebac, S., Zeeman, G.: Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 19(9), 363–370 (2001)

    Article  Google Scholar 

  103. Pretel Jolis, R.: Environmental and economic sustainability of submerged anaerobic membrane bioreactors treating urban wastewater. PhD thesis, Universitat Politècnica de València, Valencia, Spain (2015)

  104. Stuckey, D.C.: Recent developments in anaerobic membrane reactors. Bioresour. Technol. 122, 137–148 (2012)

    Article  Google Scholar 

  105. Brown, N.: Methane dissolved in wastewater exiting UASB reactors: concentration measurement and methods for neutralization. Department of Energy Technology, Royal Institute of Technology (KTH), Stockholm (2006)

    Google Scholar 

  106. Baumann, H., Tillman, A.M.: The Hitch Hiker’s Guide to LCA-An orientation in life cycle assessment methology and application. Studentlitteratur, Lund (2004)

    Google Scholar 

  107. ISO 14040: Environmental Management – Life Cycle Assessment – Principles and Framework (2006)

  108. Hospido, A., Sanchez, I., Rodriguez-Garcia, G., Iglesias, A., Buntner, D., Reif, R., Moreira, M.T., Feijoo, G.: Are all membrane reactors equal from an environmental point of view? Desalination. 285, 263–270 (2012)

    Article  Google Scholar 

  109. Larsen, H.F., Wenzel, H., Hauschild, M.: New methodology in life cycle impact assessment (LCIA) of wastewater treatment. In: Micropol & Ecohazard: 5th IWA Specialized Conference on Assessment and Control of Micropollutants, Hazardous Substances in Water, 17–20 June 2007, Frankfurt/Main (2007)

  110. Corominas, L., Foley, J., Guest, J.S., Hospido, A., Larsen, H.F., Morera, S., Shaw, A.: Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 47, 5480–5492 (2013)

    Article  Google Scholar 

  111. Hoibye, L., Clauson-Kaas, J., Wenzel, H., Larsen, H.F., Jacobsen, B.N., Dalgaard, O.: Sustainability assessment of advanced wastewater treatment technologies. Water Sci. Technol. 58(5), 963–968 (2008)

    Article  Google Scholar 

  112. Lazarova, V., Martin, S., Bonroy, J., Dauthuille, P.: Main strategies for improvement of energy efficiency of membrane bioreactors. IWA Regular Conference on Membrane Technology and Water Reuse, MTWR, 18th–22th October 2010, Istanbul, Turkey, 1078–1080 (2011)

  113. Georgiopoulou, M., Abeliotis, K., Kornaros, M., Lyberatos, G.: Selection of the best available technology for industrial wastewater treatment based on environmental evaluation of alternative treatment technologies: the case of milk industry. Fresen. Environ. Bull. 17(1), 1–12 (2008)

    Google Scholar 

  114. Krzeminski, P., Leverette, L., Malamis, S., Katsou, E.: Membrane bioreactors: a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 527, 207–227

  115. Foley, J., Rozendal, R.A., Hertle, C.K., Lant, P.A., Rabaey, K.: Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44, 3629–3637 (2010)

    Article  Google Scholar 

  116. O’Connor, M., Garnier, G., Batchelor, W.: Life cycle assessment comparison of industrial effluent management strategies. J. Clean. Prod. 79, 168–181 (2014)

    Article  Google Scholar 

  117. Smith, A.L., Stadler, L.B., Cao, L., Love, N.G., Raskin, L., Skerlos, S.J.: Navigating wastewater energy recovery 1 strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 48, 5972–5981 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Royal Society for funding the current research: Ad-Bio: Advanced Biological Wastewater Treatment Processes, Newton Advanced Fellowship -2015/R2. Theoni M. Massara is grateful to the Natural Environment Research Council (NERC) of the UK for the 4-year full PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evina Katsou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massara, T.M., Komesli, O.T., Sozudogru, O. et al. A Mini Review of the Techno-environmental Sustainability of Biological Processes for the Treatment of High Organic Content Industrial Wastewater Streams. Waste Biomass Valor 8, 1665–1678 (2017). https://doi.org/10.1007/s12649-017-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0022-y

Keywords

Navigation