Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds

Abstract

New tendencies respect to economic development model in the process of agro-industrial materials are oriented to circular economy in which the treatment and reuse of wastes and by-product play a crucial role. Over the last decades, different products from agro-food industries have been processed by membrane technologies (micro, ultra and nano-filtration). Today, these pressure-driven membrane processes have been subjected to various applications, like food wastes, bioproduct, and by-product processing. However, the most challenging issue concerns about the recovery of high-added value components from their by-products. The aim of this work is to provide a wide understanding of the current framework for membrane technology in this field. Thereby, the utilization of aqueous wastes from industries is highlighted; it denotes the real advantages that these methodologies offer in terms of high-added value solute recovery. Finally, this review discusses in detail the following aspects: framework of integrated membrane systems in wastewater fractionation, the economic framework as the limitation of membrane technology, and the environmental benefits of membrane technology (water reclamation).

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

MF:

Microfiltration

UF:

Ultrafiltration

NF:

Nanofiltration

TMP:

Transmembrane pressure

MWCO:

Molecular weight cut-off

R & D:

Research and development

References

  1. 1.

    Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Cleaner Prod. 114, 11–32 (2016). 10.1016/j.jclepro.2015.09.007

    Article  Google Scholar 

  2. 2.

    Ren, J., Manzardo, A., Toniolo, S., Scipioni, A.: Sustainability of hydrogen supply chain. Part I: identification of critical criteria and cause-effect analysis for enhancing the sustainability using DEMATEL. Int. J. Hydrogen Energy. 38(33), 14159–14171 (2013). 10.1016/j.ijhydene.2013.08.126

    Article  Google Scholar 

  3. 3.

    Mirabella, N., Castellani, V., & Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Cleaner Prod.. 65, 28–41 (2014). doi:10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  4. 4.

    Petruccioli, M., Raviv, M., Di Silvestro, R., Dinelli, G.: Agriculture and agro-industrial wastes, by-products, and wastewaters. Comprehensive Biotechnology. In: Moo-Young, M. (ed.). UK: Elsevier (2011). doi:10.1016/B978-0-08-088504-9.00389-5

    Google Scholar 

  5. 5.

    Russo, C.: A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 288, 239–246 (2007). 10.1016/j.memsci.2006.11.020

    Article  Google Scholar 

  6. 6.

    Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog.. 2(1), 46–56 (2003). doi:10.1002/ep.670220116

    Article  Google Scholar 

  7. 7.

    Galanakis, C.M.: Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015). doi:10.1016/j.tifs.2014.11.005

    Article  Google Scholar 

  8. 8.

    Galanakis, C.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012). 10.1016/j.tifs.2012.03.003

    Article  Google Scholar 

  9. 9.

    Galanakis, C.M.: (2015). The universal recovery strategy. Food waste recovery: processing technologies and industrial techniques. In: Galanakis, C.M. (ed.).UK: Elsevier. doi:10.1016/B978-0-12-800351-0.00003-1

    Google Scholar 

  10. 10.

    Li, J., Chase, H.A.: Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 32, 601–608 (2010). doi:10.1007/s10529-009-0199-7

    Article  Google Scholar 

  11. 11.

    Castro-Muñoz, R., Yáñez-Fernández, J., Fíla, V.: Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food. Chem. 213, 753–762 (2016). 10.1016/j.foodchem.2016.07.030

    Article  Google Scholar 

  12. 12.

    Jiao, B., Cassano, A., Drioli, E.: Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 63, 303–324 (2004). 10.1016/j.jfoodeng.2003.08.003

    Article  Google Scholar 

  13. 13.

    Cheryan, M., Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13–28 (1998). 10.1016/S0376-7388(98)00190-2

    Article  Google Scholar 

  14. 14.

    Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S.: Chemical treatment technologies for waste-water recycling-An overview. RSC Adv. 2, 6380–6388 (2012). DOI:10.1039/C2RA20340E

    Article  Google Scholar 

  15. 15.

    Cassano, A., Donato, L., Conidi, C., Drioli, E.: Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innov. Food Sci. Emerg, Technol.. 9, 556–562 (2008). doi:10.1016/j.ifset.2008.03.004

    Article  Google Scholar 

  16. 16.

    Conidi, C., Cassano, A., Garcia-Castello, E.: Valorization of artichoke wastewaters by integrated membrane process. Water Res. 48, 363–374 (2014). doi:10.1016/j.watres.2013.09.047

    Article  Google Scholar 

  17. 17.

    Galanakis, C.M., Fountoulis, G., Gekas, V.: Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination. 286, 277–284 (2012)

    Article  Google Scholar 

  18. 18.

    Galanakis, C.M., Tornberg, E., Gekas, V.: Clarification of high-added value products from olive mill wastewater. J. Food Eng. 99, 190–197 (2010). doi:10.1016/j.jfoodeng.2010.02.018

    Article  Google Scholar 

  19. 19.

    Salehi, F.: Current and future applications for nanofiltration technology in the food processing. Food Bioprod. Process. 92, 161–177 (2014). doi:10.1016/j.fbp.2013.09.005

    Article  Google Scholar 

  20. 20.

    Cassano, A., Conidi, C., Galanakis, C.M., Castro-Muñoz, R.: (2016). Recovery of polyphenols from olive mill wastewaters by membrane operations. Membrane technologies for biorefining. In: Figoli, A., A., Cassano, &amp, Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00007-4

    Google Scholar 

  21. 21.

    Vojvodić, A., Komes, D., Vovk, I., Belščak-Cvitanović, A., Bušić, A.: (2016). Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 89, 565–573. doi:10.1016/j.foodres.2016.07.023

    Article  Google Scholar 

  22. 22.

    O’Neill, M.A., York, W.S.: (2003). The composition and structure of primary cell walls. The Plant Cell Wall. In: Rose, JKC. (ed.). UK: Blackwell Publishing

    Google Scholar 

  23. 23.

    Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds : a review. Anim. Feed Sci. Technol. 128, 175–217 (2006). 10.1016/j.anifeedsci.2005.12.002

    Article  Google Scholar 

  24. 24.

    Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., Caristi, C.: Flavonoids composition of citrus juices. Molecules. 12, 1641–1673 (2007). doi:10.3390/12081641

    Article  Google Scholar 

  25. 25.

    Benavente-García, O., Castillo, J.: Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food. Chem. 56, 6185–6205 (2008). doi:10.1021/jf8006568

    Article  Google Scholar 

  26. 26.

    Di Donna, L., De Luca, G., Mazzotti, F., Napoli, A., Salerno, R., Taverna, D., Sindona, G.: Statin-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 72, 1352–1354 (2009). doi:10.1021/np900096w

    Article  Google Scholar 

  27. 27.

    Nakajiima, V.M., Macedo, G.A., Macedo, J.A.: Citrus bioactive phenolics: Roles in the obesity treatment. LWT-Food Sci. Technol. 59, 1205–1212 (2014). doi:10.1016/j.lwt.2014.02.060

    Article  Google Scholar 

  28. 28.

    González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C.: Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 51, 327–354 (2010). 10.1016/j.jpba.2009.07.027

    Article  Google Scholar 

  29. 29.

    Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., Yano, Y.: Accumulation of carotenoids and expression of carotenoid biosynthesis genes during maturation in citrus fruit. Plant Physiol. 134, 824–837 (2004) doi:10.1104/pp.103.031104

    Article  Google Scholar 

  30. 30.

    Matsumoto, H., Ikoma, Y., Kato, M., Kuniga, T., Nakajima, N., Yoshida, T.: Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J. Agric. Food. Chem. 55, 2356–2368 (2007). doi:10.1021/jf062629c

    Article  Google Scholar 

  31. 31.

    O’Shea, N., Arendt, E.K., Gallagher, E.: Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 16, 1–10 (2012). 10.1016/j.ifset.2012.06.002

    Article  Google Scholar 

  32. 32.

    Abirami, A., Nagarani, G., Siddhuraju, P.: Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioact. Carbohydr. Dietary Fibre. 4, 16–26 (2014). doi:10.1016/j.bcdf.2014.06.001

    Article  Google Scholar 

  33. 33.

    Escobedo-Avellaneda, Z., Gutierrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., Welti-Chanes, J.: Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods. 6, 470–481 (2014). doi:10.1016/j.jff.2013.11.013

    Article  Google Scholar 

  34. 34.

    Barba, F.J., Brianceau, S., Turk, M., Boussetta, N., Vorobiev, E.: Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol. 8(5), 1139–1148 (2015). doi:10.1007/s11947-015-1482-3

    Article  Google Scholar 

  35. 35.

    Brianceau, S., Turk, M., Vitrac, X., Vorobiev, E.: Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innova. Food Sci. Emerg. Technol. 29, 2–8 (2015). doi:10.1016/j.ifset.2014.07.010

    Article  Google Scholar 

  36. 36.

    El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R.: Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 6(5), 1281–1289 (2013). doi:10.1007/s11947-012-0869-7

    Article  Google Scholar 

  37. 37.

    Liazid, A., Guerrero, R.F., Cantos, E., Palma, M., Barroso, C.G.: Microwave assisted extraction of anthocyanins from grape skins. Food. Chem. 124(3), 1238–1243 (2011). doi:10.1016/j.foodchem.2010.07.053

    Article  Google Scholar 

  38. 38.

    Bleve, M., Ciurlia, L., Erroi, E., Lionetto, G., Longo, L., Rescio, L., Schettino, T., Vasapollo, G.: An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 64(2), 192–197 (2008). doi:10.1016/j.seppur.2008.10.012

    Article  Google Scholar 

  39. 39.

    Pascual-Martí, M.: Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta. 54(4), 735–740 (2001). doi:10.1016/S0039-9140(01)00319-8

    Article  Google Scholar 

  40. 40.

    Corrales, M., García, A.F., Butz, P., Tauscher, B.: Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 90(4), 415–421 (2009). doi:10.1016/j.jfoodeng.2008.07.003

    Article  Google Scholar 

  41. 41.

    Stavikova, L., Polovka, M., Hohnova, B., Karasek, P., Roth, M.: Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Talanta. 85(4), 2233–2240 (2011). doi:10.1016/j.talanta.2011.07.079

    Article  Google Scholar 

  42. 42.

    Rajha, H.N., Chacar, S., Afif, C., Vorobiev, E., Louka, N., Maroun, R.G.: β-cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J. Agric. Food. Chem. 63(13), 3387–3393 (2015). doi:10.1021/acs.jafc.5b00672

    Article  Google Scholar 

  43. 43.

    Wong Paz, J.E., Muñiz Márquez, D.B., Martínez Ávila, G.C.G., Belmares Cerda, R.E., Aguilar, C.N.: Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason. Sonochem. 22, 1–8 (2014). 10.1016/j.ultsonch.2014.06.001

    Google Scholar 

  44. 44.

    Sarkar, B., Chakrabart, P.P., Vijaykumar, A., Kale, V.: Wastewater treatment in diary industries-possibility of reuse. Desalination. 195, 141–152 (2006). doi:10.1016/S0011-9164(02)00661-6

    Article  Google Scholar 

  45. 45.

    Yorgun, M.S., Akmehmet, I., Saygin, O.: Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination. 229, 204–216 (2008). doi:10.1016/j.desal.2007.09.008

    Article  Google Scholar 

  46. 46.

    Cassano, A., Conidi, C., Giorno, L., & Drioli, E. : Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249, 185–193 (2013). doi:10.1016/j.jhazmat.2013.01.006

    Article  Google Scholar 

  47. 47.

    Cassano, A., Conidi, C., Drioli, E.: Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 45, 3197–3204 (2011). doi:10.1016/j.watres.2011.03.041

    Article  Google Scholar 

  48. 48.

    Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. 454, 322–329 (2014). doi:10.1016/j.memsci.2013.12.021

    Article  Google Scholar 

  49. 49.

    El-Abbassi, A., Khayet, M., Hafidi, A.: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res. 45, 4522–4530 (2011). doi:10.1016/j.watres.2011.05.044

    Article  Google Scholar 

  50. 50.

    Akdemir, E.O., Ozer, A.: Application of a statistical technique for olive oil mill wastewater treatment using ultrafiltration process. Sep. Purif. Technol. 62, 222–227 (2008). doi:10.1016/j.seppur.2008.01.006

    Article  Google Scholar 

  51. 51.

    Akdemir, E.O., Ozer, A.: Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination. 249, 660–666 (2009). doi:10.1016/j.desal.2008.06.035

    Article  Google Scholar 

  52. 52.

    Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N.: Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes. Chem. Eng. Process. Process Intensif. 50, 37–41 (2011). doi:10.1016/j.cep.2010.11.003

    Article  Google Scholar 

  53. 53.

    Conidi, C., Rodriguez-Lopez, A.D., Garcia-Castello, E.M., Cassano, A.: Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 144, 153–161 (2015). doi:10.1016/j.seppur.2015.02.025

    Article  Google Scholar 

  54. 54.

    Cassano, A., Conidi, C., Ruby Figueroa, R., Castro-Muñoz, R.: A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int. J. Mol. Sci. 16, 8968–8987 (2015). doi:10.3390/ijms16048968

    Article  Google Scholar 

  55. 55.

    Leberknight, J., Wielenga, B., Lee-Jewett, A., Menkhaus, T.J.: Recovery of high value protein from a corn ethanol process by ultrafiltration and an exploration of the associated membrane fouling. J. Membr. Sci. 366, 405–412 (2011). 10.1016/j.memsci.2010.10.033

    Article  Google Scholar 

  56. 56.

    Cassano, A., Cabri, W., Mombelli, G., Peterlongo, F., Giorno, L.: Recovery of bioactive compounds from artichoke brines by nanofiltration. Food Bioprod. Process. 98, 257–265 (2016). doi:10.1016/j.fbp.2016.02.004

    Article  Google Scholar 

  57. 57.

    Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of nixtamalization wastewaters by integrated membrane process. Food Bioprod. Process. 95, 7–18 (2015). doi:10.1016/j.fbp.2015.03.006

    Article  Google Scholar 

  58. 58.

    Castro-Muñoz, R., Orozco-Álvarez, C., Cerón-Montes, G.I., Yáñez-Fernández, J.: Characterization of the microfiltration process for the treatment of nixtamalization wastewaters. Ingeniería Agrícola y Biosistemas. 7(1), 23–34 (2015). doi:10.5154/r.inagbi.2015.03.001

    Article  Google Scholar 

  59. 59.

    Castro-Muñoz, R., Cerón-Montes, G.I., Barragán-Huerta, B.E., Yáñez-Fernández, J.: Recovery of carbohydrates from nixtamalization wastewaters (Nejayote) by ultrafiltration. Revista Mexicana de Ingeniería Química. 14(3), 735–744 (2015)

    Google Scholar 

  60. 60.

    Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valoriz.. 7(5), 1167–1176 (2016). doi:10.1007/s12649-016-9512-6

    Article  Google Scholar 

  61. 61.

    Ruby-Figueroa, R., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization of operating conditions for the recovery of antioxidant compounds by response surface methodology. Sep. Purif. Technol. 98, 255–261 (2012). doi:10.1016/j.seppur.2012.07.022

    Article  Google Scholar 

  62. 62.

    Conidi, C., Cassano, A., Drioli, E.: Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874 (2012). doi:10.1016/j.fbp.2012.07.005

    Article  Google Scholar 

  63. 63.

    Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C.: Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 91, 587–593 (2009). doi:10.1016/j.jfoodeng.2008.10.007

    Article  Google Scholar 

  64. 64.

    Díaz-Reinoso, B., González-López, N., Moure, A., Domínguez, H., Parajó, J.C.: Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. J. Food Eng. 96, 127–133 (2010). doi:10.1016/j.jfoodeng.2009.07.007

    Article  Google Scholar 

  65. 65.

    Galanakis, C.M., Markouli, E., Gekas, V.: Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 107, 245–251 (2013). doi:10.1016/j.seppur.2013.01.034

    Article  Google Scholar 

  66. 66.

    Patsioura, A., Galanakis, C.M., Gekas, V.: Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membr. Sci. 373, 53–63 (2011). doi:10.1016/j.memsci.2011.02.032

    Article  Google Scholar 

  67. 67.

    Xu, L., Lamb, K., Layton, L., Kumar, A.: A membrane-based process for recovering isoflavones from a waste stream of soy processing. Food Res. Int. 37, 867–874 (2004). doi:10.1016/j.foodres.2004.05.004

    Article  Google Scholar 

  68. 68.

    Moure, A., Domínguez, H., Parajo, J.C.: Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41, 447–456 (2006). doi:10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  69. 69.

    Aguiar Prudencio, A.P., Schwinden Prudencio, E., Castanho Amboni, R.D.M., Negrao Murakami, A.N., Maraschin, M., Cunha Petrus, J.C., Ogliari, P.J., Santos Leite, R.: Phenolic composition and antioxidant activity of the aqueous of bark from residues from mate tree (Ilex paraguariensis St.Hil.) bark harvesting concentrated by nanofiltration. Food Bioprod. Process. 90, 399–405 (2012). doi:10.1016/j.fbp.2011.12.003

    Article  Google Scholar 

  70. 70.

    Nawaz, H., Shi, J., Mittal, G.S., Kakuda, Y.: Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 48, 176–181 (2006). doi:10.1016/j.seppur.2005.07.006

    Article  Google Scholar 

  71. 71.

    Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P., Chaplain- Derouniot, M., Guerard, F.: Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: application to the refining of bioactive peptidic fractions. Sep. Purif. Technol. 66, 463–471 (2009). doi:10.1016/j.seppur.2009.02.012

    Article  Google Scholar 

  72. 72.

    Picot, L., Ravallec, R., Fouchereau-Peron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., et al.: Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90, 1819–1826 (2010). doi:10.1002/jsfa.4020

    Google Scholar 

  73. 73.

    Almécija, M.C., Ibáñez, R., Guadix, A., Guadix, E.M.: Effect on pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Membr. Sci. 288, 28–35 (2007). doi:10.1016/j.memsci.2006.10.021

    Article  Google Scholar 

  74. 74.

    Baldasso, C., Barros, T.C., Tessaro, I.C.: Concentration and purification of whey proteins by ultrafiltration. Desalination. 278, 381–386 (2011). doi:10.1016/j.desal.2011.05.055

    Article  Google Scholar 

  75. 75.

    Cuartas-Uribe, B., Alcaina-Miranda, M.I., Soriano-Costa, E., Mendoza-Roca, J.A., Iborra-Clar, M.I., Lora-García, J.: A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination. 241, 244–255 (2009). doi:10.1016/j.desal.2007.11.086

    Article  Google Scholar 

  76. 76.

    Crespo, J.G., Brazinha, C.: Membrane processing: Natural antioxidants from winemaking by-products. Filtration +. Separation. 47, 32–35 (2010). doi:10.1016/S0015-1882(10)70079-3

    Google Scholar 

  77. 77.

    Cassano, A., Conidi, C., Drioli, E.: Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination. 250, 1101–1104 (2010). doi:10.1016/j.desal.2009.09.117

    Article  Google Scholar 

  78. 78.

    Verma, S.P., Sarkar, B.: Analysis of flux decline during ultrafiltration of apple juice in a batch cell. Food Bioprod. Process. 94, 147–157 (2015). doi:10.1016/j.fbp.2015.03.002

    Article  Google Scholar 

  79. 79.

    Astaraee, R.S., Mohammadi, T., Kasiri, N.: Analysis of BSA, dextran and humic acid fouling during ultrafiltration, experimental and modelling. Food Bioprod. Process. 94, 331–341 (2015). doi:10.1016/j.fbp.2014.04.003

    Article  Google Scholar 

  80. 80.

    Galanakis, C.M., Castro-Muñoz, R., Cassano, A., Conidi, C.: (2016). Recovery of high-added-value compounds from food waste by membrane technology. Membrane technologies for biorefining. In: Figoli, A., Cassano, A., Basile, A. (eds.). UK: Elsevier. doi:10.1016/B978-0-08-100451-7.00008-6

    Google Scholar 

  81. 81.

    Ruby-Figueroa, R.A., Cassano, A., Drioli, E.: Ultrafiltration of orange press liquor: optimization for permeate flux and fouling index by response surface methodology. Sep. Purif. Technol. 80, 1–10 (2011). doi:10.1016/j.seppur.2011.03.030

    Article  Google Scholar 

  82. 82.

    Giacobbo, A., Do Prado, J.M., Meneguzzi, A., Moura Bernardes, A., De Pinho, M.N.: Microfiltration for the recovery of polyphenols from winery effluents. Sep. Purif. Technol. 143, 12–18 (2015). doi:10.1016/j.seppur.2015.01.019

    Article  Google Scholar 

  83. 83.

    Giacobbo, A., Meneguzzi, A., Bernardes, A.M., De Pinho, M.N.: Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J. Cleaner Prod. 155, 172–178 (2016). doi:10.1016/j.jclepro.2016.07.033

    Article  Google Scholar 

  84. 84.

    Garcia-Ivars, J., Iborra-Clar, M.I., Alcaina-Miranda, M.I., Mendoza-Roca, J.A., Pastor-Alcañiz, L.: Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. J. Hazard. Mat. 290, 51–59 (2015). doi:10.1016/j.jhazmat.2015.02.062

    Article  Google Scholar 

  85. 85.

    Paraskeva, C. A., Papadakis, V.G., Tsarouchi, E., Kanellopoulou, D.G., Koutsoukos, P.G.: Membrane processing for olive mill wastewater fractionation. Desalination. 213, 218–229 (2007). doi:10.1016/j.desal.2006.04.087

    Article  Google Scholar 

  86. 86.

    Almanasrah, M., Brazinha, C., Kallioinen, M., Duarte, L.C., Roseiro, L.B., Bogel-Lukasik, R., Carvalheiro, F., Manttari, M., Crespo, J.G.: Nanofiltration and reverse osmosis as a platform production of natural botanic extracts: the case study of carob by-products. Sep. Purif. Technol. 149, 389–397 (2015). doi:10.1016/j.seppur.2015.06.008

    Article  Google Scholar 

  87. 87.

    Brazinha, C., Cadima, M., Crespo, J.G.: Valorisation of spent coffee through membrane processing. J. Food Eng. 149, 123–130 (2015). doi:10.1016/j.jfoodeng.2014.07.016

    Article  Google Scholar 

  88. 88.

    Santamaría, B., Salazar, G., Beltrán, S., Cabezas, J. L.: Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination. 148, 103–109 (2002). doi:10.1016/S0011-9164(02)00661-6

    Article  Google Scholar 

  89. 89.

    Cassano, A., Conidi, C., Ruby-Figueroa, R.: Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes. 4, 509–524 (2014). doi:10.3390/membranes4030509

    Article  Google Scholar 

  90. 90.

    Córdova, A., Astudillo, C., Giorno, L., Guerrero, C., Conidi, C., Illanes, A., Cassano, A.: Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod. Process. 98, 50–61 (2016). doi:10.1016/j.fbp.2015.11.005

    Article  Google Scholar 

  91. 91.

    Tang, D.S., Yin, G.M., He, Y.Z., Hu, S.Q., Li, B., Li, L., et al.: Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem. Eng. J. 48, 1–5 (2009). doi:10.1016/j.bej.2009.05.019

    Article  Google Scholar 

  92. 92.

    Galanakis, C.M., Chasiotis, S., Botsaris, G., Gekas, V.: Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Res. Int. 65, 477–483 (2014). doi:10.1016/j.foodres.2014.03.060

    Article  Google Scholar 

  93. 93.

    Soufi-Kechaou, E., Derouiniot-Chaplin, M., Ben Amar, R., Jaouen, P., & Berge, J.P.: Recovery of valuable marine compounds from cuttlefish by-product hydrolysates: combination of enzyme bioreactor and membrane technologies. Comptes Rendus Chimie, (2016). doi:10.1016/j.crci.2016.03.018

    Google Scholar 

  94. 94.

    Sanmartín, B., Díaz, O., Rodríguez-Turienzo, L., Cobos, A.: Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey. Small Rumin. Res.. 105, 186–192 (2012). doi:10.1016/j.smallrumres.2011.11.020

    Article  Google Scholar 

  95. 95.

    Cheang, B., Zydney, A.L.: A two-stage ultrafiltration process for fractionation of whey protein isolate. J. Membr. Sci. 231, 159–167 (2004). doi:10.1016/j.memsci.2003.11.014

    Article  Google Scholar 

  96. 96.

    Scordino, M., Mauro, A.D., Passerini, A., Maccarone, E.: Highly purified sugar concentrate from a residue of citrus pigments recovery process. LWT-Food Sci. Technol.. 40, 713–721 (2007). doi:10.1016/j.lwt.2006.03.007

    Article  Google Scholar 

  97. 97.

    Atra, R., Vatai, G., Bekassy-Molnar, E., Balint, A.: Investigation of ultra and nano-filtration for utilization of whey protein and lactose. J. Food Eng. 67, 325–332 (2005). doi:10.1016/j.jfoodeng.2004.04.035

    Article  Google Scholar 

  98. 98.

    Gutiérrez-Macías, P., Montañez-Barragán, B., Barragán-Huerta, B. E.: A review of agro-food waste transformation into feedstock for reuse in fermentation. Fresenius Environ. Bull. 24(11), 3703–3716 (2015)

    Google Scholar 

  99. 99.

    Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C., Drioli, E.: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883–3892 (2010). doi:10.1016/j.watres.2010.05.005

    Article  Google Scholar 

  100. 100.

    Zagklis, D.P., Paraskeva, C.A.: Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values. Water Sci. Technol. 69, 202–207 (2014). doi:10.2166/wst.2013.683

    Article  Google Scholar 

  101. 101.

    Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E., Paraskeva, C.A.: Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mat. 285, 69–76 (2015). doi:10.1016/j.jhazmat.2014.11.038

    Article  Google Scholar 

  102. 102.

    Zagklis, D.P., Paraskeva, C.A.: Purification of grape marc phenolic compounds through membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 156, 328–335 (2015). doi:10.1016/j.seppur.2015.10.019

    Article  Google Scholar 

  103. 103.

    Bazzarelli, F., Piacentini, E., Poerio, T., Mazzei, R., Cassano, A., Giorno, L.: Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membr. Sci. 497, 402–409 (2016). doi:10.1016/j.memsci.2015.09.049

    Article  Google Scholar 

  104. 104.

    Servili, M., Esposto, S., Veneziani, G., Urbani, S., Taticchi, A., Di Maio, I., Selvaggini, R., Sordini, B., Montedoro, G.: Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food. Chem. 124, 1308–1315 (2011). doi:10.1016/j.foodchem.2010.07.042

    Article  Google Scholar 

  105. 105.

    Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 2524–2530 (2013). doi:10.1080/01496395.2013.809762

    Article  Google Scholar 

  106. 106.

    Giacobbo, A., Oliveira, M., Duarte, E.C.N. F., Mira, H. M.C., Moura Bernardes, A., De Pinho, M.N.: Ultrafiltration based process for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 48, 438–444 (2013). doi:10.1080/01496395.2012.725793

    Article  Google Scholar 

  107. 107.

    Giacobbo, A., Moura Bernardes, A., De Pinho, M.N.: Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Sep. Purif. Technol. 173, 49–54 (2017). doi:10.1016/j.seppur.2016.09.007

    Article  Google Scholar 

  108. 108.

    Machado, M.T.C., Trevisan, S., Pimentel-Souza, J.D.R., Pastore, G.M., Hubinger, M. D.: Clarification and concentration of oligosaccharides from artichoke extract by a sequential process with microfiltration and nanofiltration membranes. J. Food Eng. 180, 120–128 (2016). doi:10.1016/j.jfoodeng.2016.02.018

    Article  Google Scholar 

  109. 109.

    Ng, C.Y., Mohammad, A.W., Ng, L.Y., Jahim, J. M.: Sequential fractionation of high-added coconut products using membrane processes. J. Ind. Eng. Chem. 25, 162–167 (2015). doi:10.1016/j.jiec.2014.10.028

    Article  Google Scholar 

  110. 110.

    Bellona, C., Drewes, J.E., Xu, P., Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review. Water Res. 38(12), 2795–2809 (2004). doi:10.1016/j.watres.2004.03.034

    Article  Google Scholar 

  111. 111.

    Strathmann, H., Giorno, L., Drioli, E.: An introduction to Membrane Science and Technology. Rome: Consiglio Nazionale delle Richerche (2006)

    Google Scholar 

  112. 112.

    Brazinha, C., Crespo, J.G.: Valorization of food processing streams for obtaining extracts enriched in biologically active compounds. Integrated Membrane Operations: In the food Production. In: A. Cassano, & E. Drioli(Eds.). USA: De Gruyter (2014)

  113. 113.

    Al-Amoudi, A., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4–28 (2007). doi:10.1016/j.memsci.2007.06.002

    Article  Google Scholar 

  114. 114.

    Shi, X., Tal, G., Hankins, N.P., Gitis, V.: Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng.. 1, 121–138 (2014). doi:10.1016/j.jwpe.2014.04.003

    Article  Google Scholar 

  115. 115.

    Strathmann, H.: Membrane separation processes: Current relevance and future opportunities. AlChE J. 47(5), 1077–1087 (2001). doi:10.1002/aic.690470514

    Article  Google Scholar 

  116. 116.

    Buonomenna, M.G.: (2016). Smart composites membranes for advanced wastewater treatments. Smart Composite Coating and Membranes. In: Montemor, M.F. (ed.). UK: Elsevier, pp. 371–419. doi:10.1016/B978-1-78242-283-9.00014-2

    Google Scholar 

  117. 117.

    Asano, T., Burton, F.L., Leverenz, H.L., Tsuchihashi, R., Tchobanoglous G.: Water reuse: issues, Technologies and Applications. In Metcalf & Eddy (Eds.). New York: McGraw-Hill. (2007)

    Google Scholar 

  118. 118.

    WHO- World Health Organization: Guidelines for drinking-water quality. WHO Library Cataloguing in Publication Data, Geneva (2011)

    Google Scholar 

  119. 119.

    Ochando Pulido, J.M. (2016). A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Sci. Total Environ. 563–564, 664–665. doi:10.1016/j.scitotenv.2015.09.151

    Article  Google Scholar 

  120. 120.

    Goh, P.S., Matsuura, T., Ismail, A.F., Hilal, N.: Recent trends in membranes and membrane processes for desalination. Desalination. 391, 43–60 (2016). 10.1016/j.desal.2015.12.016

    Article  Google Scholar 

  121. 121.

    Galanakis, C.M.: Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91, 575–579 (2013). doi:10.1016/j.fbp.2013.01.004

    Article  Google Scholar 

  122. 122.

    Castro-Muñoz, R., Fíla, V., Barragán-Huerta, B.E., Yáñez-Fernández, J., Piña-Rosas, J.A., Arboleda-Mejía J.: Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J. Food Process. Preserv. (2017). doi:10.1111/jfpp.13394

    Google Scholar 

Download references

Acknowledgements

R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering—EUDIME (FPA No 2011-0014, Edition V, http://eudime.unical.it). P.C. Denis expresses his gratitude to EACEA as well for his Erasmus Mundus Master Scholarship under the program: Erasmus Mundus International Master of Science in Environmental Technology and Engineering—IMETE (Course N0 2011-0172). This work was partially supported by the Operational Program Prague—Competitiveness (CZ.2.16/3.1.00/24501), “National Program of Sustainability“(NPU I LO1613) MSMT-43760/2015, Czech Science Foundation (Grant GACR No. 15-06479S) and financial support from specific university research (IGA 2017, MSMT No 20-SVV/2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto Castro-Muñoz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castro-Muñoz, R., Barragán-Huerta, B.E., Fíla, V. et al. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valor 9, 513–529 (2018). https://doi.org/10.1007/s12649-017-0003-1

Download citation

Keywords

  • Membrane processes
  • Recovery
  • High-added value compounds
  • Water reclamation
  • Waste valorization