Skip to main content

Advertisement

Log in

A Review of Biogas Utilisation, Purification and Upgrading Technologies

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biogas is a valuable renewable energy and also a secondary energy carrier produced from biodegradable organic materials via anaerobic digestion. It can be used as a fuel or as starting material for the production of chemicals, hydrogen and/or synthesis gas etc. The main constituents of biogas are methane (CH4) and carbon dioxide (CO2), with various quantities of contaminants, such as ammonia (NH3), water vapour (H2O), hydrogen sulfide (H2S), methyl siloxanes, nitrogen (N2), oxygen (O2), halogenated volatile organic compounds (VOCs), carbon monoxide (CO) and hydrocarbons. These contaminants presence and quantities depend largely on the biogas source, which could be anaerobic digestion of many substrates and landfill decompositions. The removal of these contaminants especially H2S and CO2 will significantly improve the quality of the biogas for its further uses. In parallel, biogas upgrading market is facing challenges in term of operating costs and energy consumption. The selection of appropriate technology depends on the specific biogas requirements, site specific, local circumstances and is case sensitive. This paper reviews the present state-of-the-art of biogas cleaning and upgrading technologies, including its composition, upgrading efficiency, methane recovery and loss. In addition, biogas production, utilization and the corresponding requirements on gas quality for grid injection and vehicle usage are investigated. Based on the results of comparisons of various technologies, recommendations are made on further research on the appropriate low cost technologies, especially using solid waste as low cost materials for biogas purification and upgrading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Swedish Gas Technology Centre: Basic data of biogas. Phys. Radiol. 719–739 (2012)

    Google Scholar 

  2. Hosseini, S.E., Wahid, M.A.: Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 40, 868–875 (2014)

    Article  Google Scholar 

  3. Persson, M., Jonsson, O., Wellinger, A.: Biogas upgrading to vehicle fuel standards and grid. IEA Bioenerg. 1–32 (2007)

  4. Bauer, F., Persson, T., Hulteberg, C., Tamm, D.: Biogas upgrading—technology overview, comparison and perspectives for the future. Biofuels. Bioprod. Biorefining. 7, 499–511 (2013)

    Article  Google Scholar 

  5. Bailón Allegue, L., Hinge, J.: Biogas upgrading Evaluation of methods for H2S removal, pp. 1–31. Danish Technological Centre, Copenhagen (2014)

    Google Scholar 

  6. Bailón Allegue, L., Hinge, J.: Biogas and bio-syngas upgrading. pp. 1–97 Danish Technological Institute, Aarhus (2012)

    Google Scholar 

  7. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 1633–1645 (2011)

    Article  Google Scholar 

  8. Huertas, J.I., Giraldo, N., Izquierdo, S.: Removal of H2S and CO2 from biogas by amine absorption. Mass Transfer in Chemical Engineering Processes, vol 307, INTECH Open Access Publisher, Rijeka (2011)

    Google Scholar 

  9. Abatzoglou, N., Boivin, S.: A review of biogas purification processes. Biofuels Bioprod. Biorefining. 3, 42–71 (2009)

    Article  Google Scholar 

  10. Muñoz, R., Meier, L., Diaz, I., Jeison, D.: A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 14, 727–759 (2015)

    Article  Google Scholar 

  11. European Biogas Association: EBA Biomethane and Biogas report 2015. (2015)

  12. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015)

    Article  Google Scholar 

  13. Pike Research: http://www.businesswire.com/news/home/20121107005284/en/Worldwide-Power-Generation-Capacity-Biogas-Double-2022 -.U3NpFViSwwk

  14. Svensson, M.: Biomethane standards: Gas quality standardisation of biomethane, going from national to international level. In: European workshop Biomethane, Brussels. Green Gas Grids (2014)

  15. Johnston, M.W.: Breaking down renewable natural gas injection barriers. Biocycle. 55, 60 (2014)

    Google Scholar 

  16. Bauer, F., Hulteberg, C., Persson, T., Tamm, D.: Biogas upgrading-review of commercial technologies. SGC Rapport 2013:270. SGC Rapp. 83 (2013)

  17. Thrän, D., Billig, E., Persson, T., Svensson, M., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Baldwin, J.: Biomethane status and factors affecting market development and trade. IEA Task 40 and Task 37 Joint Study. IEA Bioenergy (2014)

  18. Gavin, T., Sinnott, R.: Chemical engineering design: principles, practice and economics of plant and process design. Elsevier Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  19. Tock, L., Gassner, M., Maréchal, F.: Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy. 34, 1838–1854 (2010)

    Article  Google Scholar 

  20. Lasocki, J., Kodziejczyk, K., Matuszewska, A.: Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and Carbon Dioxide. Polish J. Environ. Stud. 24, 1427–1434 (2015)

    Article  Google Scholar 

  21. Deng, L., Hägg, M.-B.: Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int. J. Greenh. Gas Control. 4, 638–646 (2010)

    Article  Google Scholar 

  22. Scholz, M., Melin, T., Wessling, M.: Transforming biogas into biomethane using membrane technology. Renew. Sustain. Energy Rev. 17, 199–212 (2013)

    Article  Google Scholar 

  23. Yoon, J.-H., Lee, H.: Clathrate phase equilibria for the water–phenol–carbon dioxide system. AIChE J. 43, 1884–1893 (1997)

    Article  Google Scholar 

  24. Kang, S., Seo, Y., Jang, W., Seo, Y., Fossil, C.: Gas hydrate process for recovery of CO2 from fuel gas (2009)

  25. Tajima, H., Yamasaki, A., Kiyono, F.: Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy. 29, 1713–1729 (2004)

    Article  Google Scholar 

  26. Wang, X., Chen, G., Yang, L., Zhang, L.: Study on the recovery of hydrogen from refinery (hydrogen + methane) gas mixtures using hydrate technology. Sci. China Ser. B Chem. 51, 171–178 (2008)

    Article  Google Scholar 

  27. Yang, L., Ge, X., Wan, C., Yu, F., Li, Y.: Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 40, 1133–1152 (2014)

    Article  Google Scholar 

  28. Strevett, K.A., Vieth, R.F., Grasso, D.: Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem. Eng. J. Biochem. Eng. J. 58, 71–79 (1995)

    Article  Google Scholar 

  29. Kim, S., Choi, K., Chung, J.: Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry. Int. J. Hydrog Energy. 38, 3488–3496 (2013)

    Article  Google Scholar 

  30. Luo, G., Johansson, S., Boe, K., Xie, L., Zhou, Q., Angelidaki, I.: Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol. Bioeng. 109, 1088–1094 (2012)

    Article  Google Scholar 

  31. Yan, C., Zheng, Z.: Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp. Appl. Energy. 113, 1008–1014 (2014)

    Article  Google Scholar 

  32. Schiavon, D.C., Cardoso, F.H., Frare, L.M., Gimenes, M.L., Pereira, N.C.: Purification of biogas for energy use. 37, 643–648 (2014)

  33. Petersson, A., Wellinger, A.: Biogas upgrading technologies–developments and innovations. Task 37-Energy from biogas and landfill gas, EA Bioenergy, vol 20 (2009)

  34. Cosoli, P., Ferrone, M., Pricl, S., Fermeglia, M.: Hydrogen sulphide removal from biogas by zeolite adsorption. Part I. GCMC molecular simulations. Chem. Eng. J. 145, 86–92 (2008)

    Article  Google Scholar 

  35. Montebello, A.M.: Aerobic biotrickling filtration for Andrea Monzón Montebello. J. Hazard. Mater. 280, 200–208 (2013)

    Google Scholar 

  36. Mora, M., Fernández, M., Gómez, J.M., Cantero, D., Lafuente, J., Gamisans, X., Gabriel, D.: Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Appl. Microbiol. Biotechnol. 99, 77–87 (2014)

    Article  Google Scholar 

  37. Iovane, P., Nanna, F., Ding, Y., Bikson, B., Molino, A.: Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel. 135, 352–358 (2014)

    Article  Google Scholar 

  38. Vasconelos, B.R. de: Phosphates-based catalyst for synthetic gas (syngas) production using CO2 and CH4, PhD Dissertation, University of Toulouse, France (2016)

    Google Scholar 

  39. Boyano, A., Morosuk, T., Blanco-Marigorta, A.M., Tsatsaronis, G.: Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J. Clean. Prod. 20, 152–160 (2012)

    Article  Google Scholar 

  40. Martelli, E., Nord, L.O., Bolland, O.: Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture. Appl. Energy. 92, 255–268 (2012)

    Article  Google Scholar 

  41. Braga, L.B., Silveira, J.L., da Silva, M.E., Tuna, C.E., Machin, E.B., Pedroso, D.T.: Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew. Sustain. Energy Rev. 28, 166–173 (2013)

    Article  Google Scholar 

  42. Kohn, M.P.: Catalytic reforming of biogas for syngas production. Dissertation, Columbia University (2012)

Download references

Acknowledgements

The first author acknowledges the support from School of Civil Engineering, University College Dublin, scholarship support from Student Universal Support Ireland (SUSI) and Université de Toulouse, Mines Albi, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, Albi, F-81013 cedex 09, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olumide Wesley Awe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awe, O.W., Zhao, Y., Nzihou, A. et al. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor 8, 267–283 (2017). https://doi.org/10.1007/s12649-016-9826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9826-4

Keywords

Navigation