Skip to main content

Selection of Biorefinery Routes: The Case of Xylitol and its Integration with an Organosolv Process


Lignocellulosic biomass includes agricultural and forest residues, which is a promising source for energy and chemical production when valorized through the biorefinery process. Xylitol is an important co-product in biorefinery. The production of xylitol is achieved either by yeast fermentation or by catalytic hydrogenation of xylose. However these approaches are not viable unless integrated. This paper presents a comparative analysis and the integrating opportunities of two processes for the production of xylitol, assessing the scope for individual integration as well as integration with upstream and parallel processes. The two processes examined are the fermentation of xylose by Candida yeasts (productivity 0.73 kg xylitol crystals/kg xylose), and the catalytic hydrogenation of xylose using a Raney Nickel catalyst (productivity 0.85 kg xylitol crystals/ kg xylose). The heat integration analysis resulted in conservation of 90% for cooling and 18% for heating requirements in the catalytic process. The corresponding results in the biotechnological process were 94 and 65% respectively. The economic evaluation estimated higher total investment and raw materials-utilities cost for the biotechnological process in comparison to the catalytic by 391 and 8% respectively. The economic indexes characterize the catalytic process investment as more secure and profitable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(permission CIMV)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18



Pentoses (five carbon sugars)


Hexoses (six carbon sugars)


Chemical engineering plant cost index


Compagnie Industrielle de la Matière Végétale (tr. industrial company of vegetative material)




Grand composite curves


Lower heating value


Mixed integer linear programming


Mixed integer non linear programming




Net present value


Payback period


United states dollar


  1. 1.

    Smith, R.: Chemical Process Design and Integration. Willey, Oxford (2014)

    Google Scholar 

  2. 2.

    Smith, R., Jobson, M., Chen, L.: Recent development in the retrofit of heat exchanger networks. Appl. Therm. Eng. 30, 2281–2289 (2010)

    Article  Google Scholar 

  3. 3.

    Gadalla, M., Jobson, M., Smith, R.: Optimization of existing heat-integrated refinery distillation systems, Chem. Eng. Res. Des. 81, 147–152 (2003).

    Google Scholar 

  4. 4.

    Gunaratnam, M, Alva-Argez, A., Kokossis, A.C., Kim, J.K., Smith, R.: Automated design of total water systems, Ind. & Eng. Chem. Res. 44, 588–599 (2005).

    Article  Google Scholar 

  5. 5.

    Nikolakopoulos, A., Karagiannakis, P., Galanis, A., Kokossis, A.C.: A water saving methodology for the efficient development of biorefineries, ESCAPE 22, Elsevier, London, UK, 6–10 (2011).

    Google Scholar 

  6. 6.

    Wang, Y.P., Smith, R.: Wastewater Minimisation. Chem Eng Sci. 49, 981–1006 (1994)

    Article  Google Scholar 

  7. 7.

    Alva-Argaez, A., Kokossis, A.C., Smith, R.: Wastewater minimization of industrial systems using an integrated approach, Comp. Chem. Eng. 22, 741–744 (1998)

    Article  Google Scholar 

  8. 8.

    Alva-Argaez, A., Vallianatos, A., Kokossis, A.C.: A multi-contaminant transshipment model for mass exchange networks and wastewater minimization problems. Comp. Chem. Eng. 23, 1439–1453 (1999)

    Article  Google Scholar 

  9. 9.

    Stefanakis, M.E., Pyrgakis, K., Mountraki, A.D., Kokossis, A.C.: The Total Site Approach as a synthesis tool for the selection of valorization paths in lignocellulosic biorefineries, ESCAPE 23, Lappeenranta, Finland, (2013)

    Google Scholar 

  10. 10.

    El-Halwagi, M.M.: Process Integration. Academic Press, San Diego (2006)

    Google Scholar 

  11. 11.

    Tsoka, C., Johns, W.R., Linke, P., Kokossis, A.C. A.: Towards sustainability and green chemical engineering: tools and technology requirements. Green Chem. 6(8), 401–406 (2004)

    Article  Google Scholar 

  12. 12.

    Kokossis, A.C., Yang, A.: On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comp. Chem. Eng. 34(9), 1397–1405 (2010)

    Article  Google Scholar 

  13. 13.

    Mountraki, A., Nikolakopoulos, A., Benjelloun- Mlayah, B., Kokossis, A.C.: BIOCORE—A systems integration paradigm in the real-life development of a lignocellulosic biorefinery. Comp. Chem. Eng.29 1381–1385 (2011)

    Google Scholar 

  14. 14.

    Kokossis, A., Tsakalova, M., Pyrgakis, K.: Design of integrated biorefineries, Comp. Chem. Eng. 81, 40–56 (2015)

    Article  Google Scholar 

  15. 15.

    Kokossis, A., Yang, A., Tsakalova, M., Lin, T.C.: A systems platform for the optimal synthesis of biomass based manufacturing systems. Comp. Aid. Chem. Eng. 28, 1105–1110 (2010)

    Article  Google Scholar 

  16. 16.

    Psycha, M., Pyrgakis, K., Kokossis, A.C.: Process design analysis for the valorization and selection of integrated micro-algae biorefineries, Comp. Aid. Chem. Eng. 33, 1543–1548 (2014)

    Article  Google Scholar 

  17. 17.

    Koufolioulios D., Nikolakopoulos A., Pyrgakis K., Kokossis, A.: A Mathematical Decomposition for the Synthesis and the Application of Total Site Analysis on Multi-product Biorefineries, FOCAPD 2014, Cle Elum, Elsevier, Washington (2014).

    Google Scholar 

  18. 18.

    Stefanakis, M.E., Pyrgakis, K.A., Kokossis, A.C.: Screening and assessing product portfolios in biorefineries: combining total site analysis and process synthesis, Comp. Aid. Chem. Eng. 34, 621–626 (2014)

    Article  Google Scholar 

  19. 19.

    Tsakalova M., Lin, T.C., Yang, A., Kokossis A.C.: A decision support environment for the high-throughput model-based screening and integration of biomass processing paths, Ind. Crops & Prod. 75, 103–113 (2015).

    Article  Google Scholar 

  20. 20.

    Mountraki, A.D., Benjelloun Mlayah, B., Kokossis, A.C.: A Study on the Endogenous Symbiosis of First and Second Generation Biorefineries: Towards a Systematic Methodology. ESCAPE 26, June 12–15, Portorož, Slovenia, Elsevier, 385–390 (2016)

  21. 21.

    Mountraki, A., Nikolakopoulos, A., Benjelloun Mlayah, B., Kokossis, A.C.: BIOCORE– A systems integration paradigm in the real-life development of a lignocellulosic biorefinery. ESCAPE 21, May 29-June 1, Chalkidiki Greece, Elsevier, 1381–1385 (2011)

  22. 22.

    Tsakalova, M., Kokossis, Α.: On the systematic synthesis screening and integration of real-life biorefineries. In Symposium on Biorefinery for Food, Fuel, and Materials, Wagenigen, The Netherlands. Ton van Boxtel and Marieke Bruins, Wagenigen (2013).

  23. 23.

    Pal, S., Choudhary, V., Kumar, A., Biswas, D., Mondal, A.K., Sahoo, D.K.: Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Biores. Technol. 147, 449–455 (2013).

    Article  Google Scholar 

  24. 24.

    Fatehi, P., Catalan, L., Cave, G.: Simulation analysis of producing xylitol from hemicelluloses of pre-hydrolysis liquor. Chem. Eng. Res. Des. 92, 1563–1570 (2014).

    Article  Google Scholar 

  25. 25.

    Lima, T., José, I., Ribeiro, G., Valderez, M.: Biotechnological production of xylitol from lignocellulosic wastes: A review. Process Biochem. 49, 1779–1789 (2014)

    Article  Google Scholar 

  26. 26.

    Wisniak, J., Hershkowitz, M., Leibowitz, R., and Stein, S.: Hydrogenation of xylose to xylitol. Ind. Eng. Chem. Prod. Res. Dev. 13(1), 75–79 (1974).

    Article  Google Scholar 

  27. 27.

    Parajó, J.C., Domínguez, H., Domínguez, J.M.: Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Biores. Technol. 65(3), 191–201 (1998).

    Article  Google Scholar 

  28. 28.

    Aranda-Barradas, J.S., Garibay-Orijel, C., Badillo-Corona, J.A., Salgado-Manjarrez, E.: A stoichiometric analysis of biological xylitol production. Biochem. Eng. J. 50, 1–9 (2010)

    Article  Google Scholar 

  29. 29.

    Research and Markets: Xylitol - A Global Market Overview, report ID: 2846975. ( (2014), Accessed June 17 2016.

  30. 30.

    Cheng, K., Wu, J., Lin, J., Zhang, J.: Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol. Biofuel 7(1), 166 (2014).

    Article  Google Scholar 

  31. 31.

    Snelders, J., Dornez, E., Benjelloun-Mlayah, Huijgen, W.J.J., de Wild, P.J., Gosselink, R.J.A., Gerritsma, J., Courtin, C.M.: Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour. Technol. 156, 275–282 (2014)

    Article  Google Scholar 

  32. 32.

    Delmas, M.: Vegetal refining and agrochemistry. Chem. Eng. Technol. 31(5), 792–797 (2008).

    Article  Google Scholar 

  33. 33.

    Briones, V. and Kokossis, A.C.: A new approach for the optimal retrofit of heat exchanger networks. Comp. Chem. Eng. 20 (SUPPL.1), S43–S48 (1996).

    Google Scholar 

  34. 34.

    Mavromatis, S.P. and Kokossis, A.C.: Hardware composites: A new conceptual tool for the analysis and optimisation of steam turbine networks in chemical process industries. Part I: Principles and construction procedure. Chem. Eng. Sci. 53(7), 1405–1434 (1998).

    Article  Google Scholar 

  35. 35.

    Mavromatis, S.P., Kokossis, A.C.: Conceptual optimisation of utility networks for operational variations - II. Network development and optimisation. Chem. Eng. Sci. 53(8), 1609–1630 (1998).

    Article  Google Scholar 

  36. 36.

    Tantimuratha, L., Asteris, G., Antonopoulos, D.K., Kokossis, A.C.: A conceptual programming approach for the design of flexible HENs. Comp. Chem. Eng. 25(4–6), 887–892 (2001)

    Article  Google Scholar 

  37. 37.

    Linke, P., Kokossis, A.: Advanced process systems design technology for pollution prevention and waste treatment. Adv. Env. Res. 8(2), 229–245 (2004).

    Article  Google Scholar 

  38. 38.

    Mountraki, A.D., Koutsospyros, K.R., Kokossis, A.C.: The Role of Process Integration in Reviewing and Comparing Biorefinery Processing Routes: The Case of Xylitol. Process. Chapter 12, pp, 309–329, Design Strategies for Biomass Conversion Systems, John Wiley & Sons, Inc.,Oxford (2015)

    Book  Google Scholar 

  39. 39.

    Mikkola, J.P., Sjöholm, R., Salmi, T., Mäki-Arvela, P.: Xylose hydrogenation: Kinetic and NMR studies of the reaction mechanisms. Catal. Today. 48(1), 73–81 (1999)

    Article  Google Scholar 

  40. 40.

    Mikkola, J.P., Vainio, H., Salmi, T., Sjöholm, R., Ollonqvist, T., Väyrynen, J.: Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl. Catal., A. 196(1), 143–155 (2000)

    Article  Google Scholar 

  41. 41.

    Mikkola, J.P., Salmi, T.: Three-phase catalytic hydrogenation of xylose to xylitol—Prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal. Today. 64(3), 271–277 (2001)

    Article  Google Scholar 

  42. 42.

    Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K., Saxena, R.K.: Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep. Pur. Technol. 78(3), 266–273 (2011).

    Article  Google Scholar 

  43. 43.

    Yahashi, Y., Horitsu, H., Kawai, K., Suzuki, T., Takamizawa, K.: Production of xylitol from D-xylose by Candida tropicalis: the effect of D-glucose feeding. J. Ferment. Bioeng. 81(2), 148–152 (1996)

    Article  Google Scholar 

  44. 44.

    Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H. H., Chisti, Y.: A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 28(3), 175–183 (2005)

    Article  Google Scholar 

  45. 45.

    Faria, L.F.F., Pereira, N. Jr., Nobrega, R.: Xylitol production from d-xylose in a membrane bioreactor. Desalination. 149(1), 231–236 (2002)

    Article  Google Scholar 

  46. 46.

    Branco, R.F., Santos, J.C., Murakami, L.Y., et al.: Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochem. 42(2), 258–262 (2007)

    Article  Google Scholar 

  47. 47.

    Parajó, J.C., Dominguez, H., Domínguez, J.: Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresour. Technol. 66(1), 25–40 (1998)

    Article  Google Scholar 

  48. 48.

    Nigam, P., Singh, D.: Processes of fermentative production of Xylitol - a sugar substitute. Process Biochem. 30(2), 117–124 (1995)

    Google Scholar 

  49. 49.

    Silva, S.S., Roberto, I.C., Felipe, M.G., Mancilha, I.M.: Batch fermentation of xylose for xylitol production in stirred tank bioreactor. Process Biochem. 31(6), 549–553 (1996)

    Article  Google Scholar 

  50. 50.

    Jiang, Z., Wu, P: Pseudo-steady state method on study of xylose hydrogenation in a tricklebed reactor. Catal. Today. 44(1), 351–356 (1998)

    Article  Google Scholar 

  51. 51.

    Kemp, I.C.: Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  52. 52.

    Tsagkari, M., Couturier, J.L., Kokossis, A., Dubois, J.L.: Early-stage capital cost estimation of biorefinery processes: a comparative study of heuristic techniques. ChemSusChem. 9(17), 2284–2297 (2016)

    Article  Google Scholar 

  53. 53.

    Lange J.: Fuels and chemicals manufacturing, guidelines for understanding and minimizing the production costs. Cattech, 5(2), 82–95 (2001).

    Article  Google Scholar 

  54. 54.

    Compass International, Global Construction Cost and Reference Yearbook, Compass International, Inc, 2016. “ [Online].

  55. 55.

    European Central Bank,, Accessed 08 Dec 2016.

  56. 56.

    Christensen P., Dysert L.R.: Cost estimate classification system–as applied in engineering, procurement, and construction for the process industries. AACE International Recommended Practice No. 18R-97 (2016).

  57. 57.

    Mason, D.M., Gandhi K.: Formulas for calculating the heating value of coal and coal char: development, tests and uses. Am Chem. Soc. Div. Fuel Chem. 25, 235–245 (1980).

    Google Scholar 

  58. 58.

    Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers, 5th edition, McGraw-Hill. Higher Education, New York (2003)

    Google Scholar 

  59. 59.

    Couper, J.R., Penney, W.R., Fair, J.R., Walas, S.M.: Chemical Process Equipment, Selection and Design (Third Edition). Elsevier, USA (2012)

    Google Scholar 

Download references


Financial support from the Consortium of Marie Curie project RENESENG (FP7-607415) is gratefully acknowledged. The authors would also like to thank Marilyn Wiebe and all the people working for the BIOCORE Project (FP7-241566), for their collaboration and excellent communication.

Author information



Corresponding author

Correspondence to A. D. Mountraki.



See Tables 12, 13, 14, 15, 16, 17 and 18.

Table 12 Shortcut calculations
Table 13 Cost estimation of the heat exchangers in the catalytic process
Table 14 Total equipment cost estimation of the catalytic process
Table 15 Cost estimation of the heat exchangers in the biochemical process
Table 16 Total equipment cost estimation of the biochemical process
Table 17 Raw materials and utilities cost
Table 18 Calculation of the total fixed investment

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mountraki, A.D., Koutsospyros, K.R., Mlayah, B.B. et al. Selection of Biorefinery Routes: The Case of Xylitol and its Integration with an Organosolv Process. Waste Biomass Valor 8, 2283–2300 (2017).

Download citation


  • Xylitol
  • Process design
  • Cost estimation
  • Integration
  • Biorefinery