Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 7, pp 2283–2300 | Cite as

Selection of Biorefinery Routes: The Case of Xylitol and its Integration with an Organosolv Process

  • A. D. MountrakiEmail author
  • K. R. Koutsospyros
  • B. Benjelloun Mlayah
  • A. C. Kokossis
Original Paper

Abstract

Lignocellulosic biomass includes agricultural and forest residues, which is a promising source for energy and chemical production when valorized through the biorefinery process. Xylitol is an important co-product in biorefinery. The production of xylitol is achieved either by yeast fermentation or by catalytic hydrogenation of xylose. However these approaches are not viable unless integrated. This paper presents a comparative analysis and the integrating opportunities of two processes for the production of xylitol, assessing the scope for individual integration as well as integration with upstream and parallel processes. The two processes examined are the fermentation of xylose by Candida yeasts (productivity 0.73 kg xylitol crystals/kg xylose), and the catalytic hydrogenation of xylose using a Raney Nickel catalyst (productivity 0.85 kg xylitol crystals/ kg xylose). The heat integration analysis resulted in conservation of 90% for cooling and 18% for heating requirements in the catalytic process. The corresponding results in the biotechnological process were 94 and 65% respectively. The economic evaluation estimated higher total investment and raw materials-utilities cost for the biotechnological process in comparison to the catalytic by 391 and 8% respectively. The economic indexes characterize the catalytic process investment as more secure and profitable.

Keywords

Xylitol Process design Cost estimation Integration Biorefinery 

Abbreviations

C5

Pentoses (five carbon sugars)

C6

Hexoses (six carbon sugars)

CEPCI

Chemical engineering plant cost index

CIMV

Compagnie Industrielle de la Matière Végétale (tr. industrial company of vegetative material)

cr

Crystallized

GCC

Grand composite curves

LHV

Lower heating value

MILP

Mixed integer linear programming

MINLP

Mixed integer non linear programming

MM

Million

NPV

Net present value

PBP

Payback period

USD

United states dollar

Notes

Acknowledgements

Financial support from the Consortium of Marie Curie project RENESENG (FP7-607415) is gratefully acknowledged. The authors would also like to thank Marilyn Wiebe and all the people working for the BIOCORE Project (FP7-241566), for their collaboration and excellent communication.

References

  1. 1.
    Smith, R.: Chemical Process Design and Integration. Willey, Oxford (2014)Google Scholar
  2. 2.
    Smith, R., Jobson, M., Chen, L.: Recent development in the retrofit of heat exchanger networks. Appl. Therm. Eng. 30, 2281–2289 (2010)CrossRefGoogle Scholar
  3. 3.
    Gadalla, M., Jobson, M., Smith, R.: Optimization of existing heat-integrated refinery distillation systems, Chem. Eng. Res. Des. 81, 147–152 (2003).Google Scholar
  4. 4.
    Gunaratnam, M, Alva-Argez, A., Kokossis, A.C., Kim, J.K., Smith, R.: Automated design of total water systems, Ind. & Eng. Chem. Res. 44, 588–599 (2005).CrossRefGoogle Scholar
  5. 5.
    Nikolakopoulos, A., Karagiannakis, P., Galanis, A., Kokossis, A.C.: A water saving methodology for the efficient development of biorefineries, ESCAPE 22, Elsevier, London, UK, 6–10 (2011).Google Scholar
  6. 6.
    Wang, Y.P., Smith, R.: Wastewater Minimisation. Chem Eng Sci. 49, 981–1006 (1994)CrossRefGoogle Scholar
  7. 7.
    Alva-Argaez, A., Kokossis, A.C., Smith, R.: Wastewater minimization of industrial systems using an integrated approach, Comp. Chem. Eng. 22, 741–744 (1998)CrossRefGoogle Scholar
  8. 8.
    Alva-Argaez, A., Vallianatos, A., Kokossis, A.C.: A multi-contaminant transshipment model for mass exchange networks and wastewater minimization problems. Comp. Chem. Eng. 23, 1439–1453 (1999)CrossRefGoogle Scholar
  9. 9.
    Stefanakis, M.E., Pyrgakis, K., Mountraki, A.D., Kokossis, A.C.: The Total Site Approach as a synthesis tool for the selection of valorization paths in lignocellulosic biorefineries, ESCAPE 23, Lappeenranta, Finland, (2013)Google Scholar
  10. 10.
    El-Halwagi, M.M.: Process Integration. Academic Press, San Diego (2006)Google Scholar
  11. 11.
    Tsoka, C., Johns, W.R., Linke, P., Kokossis, A.C. A.: Towards sustainability and green chemical engineering: tools and technology requirements. Green Chem. 6(8), 401–406 (2004)CrossRefGoogle Scholar
  12. 12.
    Kokossis, A.C., Yang, A.: On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comp. Chem. Eng. 34(9), 1397–1405 (2010)CrossRefGoogle Scholar
  13. 13.
    Mountraki, A., Nikolakopoulos, A., Benjelloun- Mlayah, B., Kokossis, A.C.: BIOCORE—A systems integration paradigm in the real-life development of a lignocellulosic biorefinery. Comp. Chem. Eng.29 1381–1385 (2011)Google Scholar
  14. 14.
    Kokossis, A., Tsakalova, M., Pyrgakis, K.: Design of integrated biorefineries, Comp. Chem. Eng. 81, 40–56 (2015)CrossRefGoogle Scholar
  15. 15.
    Kokossis, A., Yang, A., Tsakalova, M., Lin, T.C.: A systems platform for the optimal synthesis of biomass based manufacturing systems. Comp. Aid. Chem. Eng. 28, 1105–1110 (2010)CrossRefGoogle Scholar
  16. 16.
    Psycha, M., Pyrgakis, K., Kokossis, A.C.: Process design analysis for the valorization and selection of integrated micro-algae biorefineries, Comp. Aid. Chem. Eng. 33, 1543–1548 (2014)CrossRefGoogle Scholar
  17. 17.
    Koufolioulios D., Nikolakopoulos A., Pyrgakis K., Kokossis, A.: A Mathematical Decomposition for the Synthesis and the Application of Total Site Analysis on Multi-product Biorefineries, FOCAPD 2014, Cle Elum, Elsevier, Washington (2014).Google Scholar
  18. 18.
    Stefanakis, M.E., Pyrgakis, K.A., Kokossis, A.C.: Screening and assessing product portfolios in biorefineries: combining total site analysis and process synthesis, Comp. Aid. Chem. Eng. 34, 621–626 (2014)CrossRefGoogle Scholar
  19. 19.
    Tsakalova M., Lin, T.C., Yang, A., Kokossis A.C.: A decision support environment for the high-throughput model-based screening and integration of biomass processing paths, Ind. Crops & Prod. 75, 103–113 (2015).CrossRefGoogle Scholar
  20. 20.
    Mountraki, A.D., Benjelloun Mlayah, B., Kokossis, A.C.: A Study on the Endogenous Symbiosis of First and Second Generation Biorefineries: Towards a Systematic Methodology. ESCAPE 26, June 12–15, Portorož, Slovenia, Elsevier, 385–390 (2016)Google Scholar
  21. 21.
    Mountraki, A., Nikolakopoulos, A., Benjelloun Mlayah, B., Kokossis, A.C.: BIOCORE– A systems integration paradigm in the real-life development of a lignocellulosic biorefinery. ESCAPE 21, May 29-June 1, Chalkidiki Greece, Elsevier, 1381–1385 (2011)Google Scholar
  22. 22.
    Tsakalova, M., Kokossis, Α.: On the systematic synthesis screening and integration of real-life biorefineries. In Symposium on Biorefinery for Food, Fuel, and Materials, Wagenigen, The Netherlands. Ton van Boxtel and Marieke Bruins, Wagenigen (2013).Google Scholar
  23. 23.
    Pal, S., Choudhary, V., Kumar, A., Biswas, D., Mondal, A.K., Sahoo, D.K.: Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Biores. Technol. 147, 449–455 (2013).CrossRefGoogle Scholar
  24. 24.
    Fatehi, P., Catalan, L., Cave, G.: Simulation analysis of producing xylitol from hemicelluloses of pre-hydrolysis liquor. Chem. Eng. Res. Des. 92, 1563–1570 (2014).CrossRefGoogle Scholar
  25. 25.
    Lima, T., José, I., Ribeiro, G., Valderez, M.: Biotechnological production of xylitol from lignocellulosic wastes: A review. Process Biochem. 49, 1779–1789 (2014)CrossRefGoogle Scholar
  26. 26.
    Wisniak, J., Hershkowitz, M., Leibowitz, R., and Stein, S.: Hydrogenation of xylose to xylitol. Ind. Eng. Chem. Prod. Res. Dev. 13(1), 75–79 (1974).CrossRefGoogle Scholar
  27. 27.
    Parajó, J.C., Domínguez, H., Domínguez, J.M.: Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Biores. Technol. 65(3), 191–201 (1998).CrossRefGoogle Scholar
  28. 28.
    Aranda-Barradas, J.S., Garibay-Orijel, C., Badillo-Corona, J.A., Salgado-Manjarrez, E.: A stoichiometric analysis of biological xylitol production. Biochem. Eng. J. 50, 1–9 (2010)CrossRefGoogle Scholar
  29. 29.
    Research and Markets: Xylitol - A Global Market Overview, report ID: 2846975. (http://www.researchandmarkets.com/reports/2846975/xylitol-a-global-market-overview) (2014), Accessed June 17 2016.
  30. 30.
    Cheng, K., Wu, J., Lin, J., Zhang, J.: Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol. Biofuel 7(1), 166 (2014).CrossRefGoogle Scholar
  31. 31.
    Snelders, J., Dornez, E., Benjelloun-Mlayah, Huijgen, W.J.J., de Wild, P.J., Gosselink, R.J.A., Gerritsma, J., Courtin, C.M.: Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour. Technol. 156, 275–282 (2014)CrossRefGoogle Scholar
  32. 32.
    Delmas, M.: Vegetal refining and agrochemistry. Chem. Eng. Technol. 31(5), 792–797 (2008).CrossRefGoogle Scholar
  33. 33.
    Briones, V. and Kokossis, A.C.: A new approach for the optimal retrofit of heat exchanger networks. Comp. Chem. Eng. 20 (SUPPL.1), S43–S48 (1996).Google Scholar
  34. 34.
    Mavromatis, S.P. and Kokossis, A.C.: Hardware composites: A new conceptual tool for the analysis and optimisation of steam turbine networks in chemical process industries. Part I: Principles and construction procedure. Chem. Eng. Sci. 53(7), 1405–1434 (1998).CrossRefGoogle Scholar
  35. 35.
    Mavromatis, S.P., Kokossis, A.C.: Conceptual optimisation of utility networks for operational variations - II. Network development and optimisation. Chem. Eng. Sci. 53(8), 1609–1630 (1998).CrossRefGoogle Scholar
  36. 36.
    Tantimuratha, L., Asteris, G., Antonopoulos, D.K., Kokossis, A.C.: A conceptual programming approach for the design of flexible HENs. Comp. Chem. Eng. 25(4–6), 887–892 (2001)CrossRefGoogle Scholar
  37. 37.
    Linke, P., Kokossis, A.: Advanced process systems design technology for pollution prevention and waste treatment. Adv. Env. Res. 8(2), 229–245 (2004).CrossRefGoogle Scholar
  38. 38.
    Mountraki, A.D., Koutsospyros, K.R., Kokossis, A.C.: The Role of Process Integration in Reviewing and Comparing Biorefinery Processing Routes: The Case of Xylitol. Process. Chapter 12, pp, 309–329, Design Strategies for Biomass Conversion Systems, John Wiley & Sons, Inc.,Oxford (2015)CrossRefGoogle Scholar
  39. 39.
    Mikkola, J.P., Sjöholm, R., Salmi, T., Mäki-Arvela, P.: Xylose hydrogenation: Kinetic and NMR studies of the reaction mechanisms. Catal. Today. 48(1), 73–81 (1999)CrossRefGoogle Scholar
  40. 40.
    Mikkola, J.P., Vainio, H., Salmi, T., Sjöholm, R., Ollonqvist, T., Väyrynen, J.: Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl. Catal., A. 196(1), 143–155 (2000)CrossRefGoogle Scholar
  41. 41.
    Mikkola, J.P., Salmi, T.: Three-phase catalytic hydrogenation of xylose to xylitol—Prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal. Today. 64(3), 271–277 (2001)CrossRefGoogle Scholar
  42. 42.
    Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K., Saxena, R.K.: Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep. Pur. Technol. 78(3), 266–273 (2011).CrossRefGoogle Scholar
  43. 43.
    Yahashi, Y., Horitsu, H., Kawai, K., Suzuki, T., Takamizawa, K.: Production of xylitol from D-xylose by Candida tropicalis: the effect of D-glucose feeding. J. Ferment. Bioeng. 81(2), 148–152 (1996)CrossRefGoogle Scholar
  44. 44.
    Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H. H., Chisti, Y.: A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 28(3), 175–183 (2005)CrossRefGoogle Scholar
  45. 45.
    Faria, L.F.F., Pereira, N. Jr., Nobrega, R.: Xylitol production from d-xylose in a membrane bioreactor. Desalination. 149(1), 231–236 (2002)CrossRefGoogle Scholar
  46. 46.
    Branco, R.F., Santos, J.C., Murakami, L.Y., et al.: Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochem. 42(2), 258–262 (2007)CrossRefGoogle Scholar
  47. 47.
    Parajó, J.C., Dominguez, H., Domínguez, J.: Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresour. Technol. 66(1), 25–40 (1998)CrossRefGoogle Scholar
  48. 48.
    Nigam, P., Singh, D.: Processes of fermentative production of Xylitol - a sugar substitute. Process Biochem. 30(2), 117–124 (1995)Google Scholar
  49. 49.
    Silva, S.S., Roberto, I.C., Felipe, M.G., Mancilha, I.M.: Batch fermentation of xylose for xylitol production in stirred tank bioreactor. Process Biochem. 31(6), 549–553 (1996)CrossRefGoogle Scholar
  50. 50.
    Jiang, Z., Wu, P: Pseudo-steady state method on study of xylose hydrogenation in a tricklebed reactor. Catal. Today. 44(1), 351–356 (1998)CrossRefGoogle Scholar
  51. 51.
    Kemp, I.C.: Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy. Butterworth-Heinemann, Oxford (2011)Google Scholar
  52. 52.
    Tsagkari, M., Couturier, J.L., Kokossis, A., Dubois, J.L.: Early-stage capital cost estimation of biorefinery processes: a comparative study of heuristic techniques. ChemSusChem. 9(17), 2284–2297 (2016)CrossRefGoogle Scholar
  53. 53.
    Lange J.: Fuels and chemicals manufacturing, guidelines for understanding and minimizing the production costs. Cattech, 5(2), 82–95 (2001).CrossRefGoogle Scholar
  54. 54.
    Compass International, Global Construction Cost and Reference Yearbook, Compass International, Inc, 2016. “http://www.chemengonline.com/pci-home [Online].
  55. 55.
  56. 56.
    Christensen P., Dysert L.R.: Cost estimate classification system–as applied in engineering, procurement, and construction for the process industries. AACE International Recommended Practice No. 18R-97 (2016).Google Scholar
  57. 57.
    Mason, D.M., Gandhi K.: Formulas for calculating the heating value of coal and coal char: development, tests and uses. Am Chem. Soc. Div. Fuel Chem. 25, 235–245 (1980).Google Scholar
  58. 58.
    Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers, 5th edition, McGraw-Hill. Higher Education, New York (2003)Google Scholar
  59. 59.
    Couper, J.R., Penney, W.R., Fair, J.R., Walas, S.M.: Chemical Process Equipment, Selection and Design (Third Edition). Elsevier, USA (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Compagnie Industrielle de la Matière Végétale (CIMV)ToulouseFrance
  2. 2.National Technical University of Athens (NTUA)ZografosGreece

Personalised recommendations