Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative Study on Catalytic and Non-Catalytic Pyrolysis of Olive Mill Solid Wastes

  • 419 Accesses

  • 6 Citations


In this study, catalytic and non-catalytic fast pyrolysis of dried olive husk and olive kernels was carried out. A bubbling fluidised bed reactor was used for the non-catalytic processing of the solid olive wastes. In-situ catalytic upgrading of biomass fast pyrolysis vapours was performed in a fixed bed bench-scale reactor at 500 °C, for catalyst screening purposes. A maximum bio-oil yield of 47.35 wt.% (on dry biomass) was obtained from non-catalytic fast pyrolysis at a reaction temperature of 450 °C, while the bio-oil yield was decreased at 37.14 wt.% when the temperature was increased to 500 °C. In the case of the fixed bed unit tests, the highest liquid (52.66 wt.%) and organics (30.99 wt.%) yield was achieved with the use of the non-catalytic silica sand. Depending on the catalytic material, the liquid yield ranged from 47.03 to 43.96 wt.% the organic yield from 21.15 to 16.34 wt.% on dry biomass. Solid products were increased from 28.23 wt.% for the non-catalytic run to 32.81 wt.% on dry biomass, when MgO (5% Co) was used.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Arvanitoyannis, I. S., Kassaveti, A., Stefanatos, S.: Current and potential uses of thermally treated olive oil waste. Int. J. Food Sci. Technol. 42(7), 852–867 (2007)

  2. 2.

    ASTM, Standard Test Method for ash in Biomass, ASTM International, West Conshohocken, PA, 2007

  3. 3.

    Banks, S. W., Nowakowski, D. J., & Bridgwater, A. V. (2014). Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Proc. Technol. 128, 94–103.

  4. 4.

    Bridgwater, A. V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68–94 (2012)

  5. 5.

    Çağlar, A., Demirbaş, A.: Hydrogen rich gas mixture from olive husk via pyrolysis. Energy Convers. Manage. 43(1), 109–117 (2002)

  6. 6.

    Caputo, A. C., Scacchia, F., Pelagagge, P. M.: Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl. Therm. Eng. 23(2), 197–214 (2003)

  7. 7.

    Carlson, T. R., Vispute, T. P., Huber, G. W.: Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem. 1(5), 397–400 (2008)

  8. 8.

    Christoforou, E. A., Fokaides, P. A., Kyriakides, I.: Monte Carlo parametric modeling for predicting biomass calorific value. J. Therm. Anal. Calorim. 118(3), 1789–1796 (2014)

  9. 9.

    Christoforou, E., Fokaides, P. A.: A review of olive mill solid wastes to energy utilization techniques. Waste Manage. 49, 346–363 (2016)

  10. 10.

    Demiral, I., Şensöz, S.: The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresour. Technol. 99(17), 8002–8007 (2008)

  11. 11.

    Deng, L., Fu, Y., Guo, Q. X.: Upgraded acidic components of bio-oil through catalytic ketonic condensation. Energy Fuels. 23(1), 564–568 (2009)

  12. 12.

    ECN, Phyllis, database for biomass and waste, Energy research Centre of the Netherlands, in, Energy research Centre of the Netherlands, 2011.

  13. 13.

    Encinar, J. M., Beltran, F. J., Bernalte, A., Ramiro, A., Gonzalez, J. F.: Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. 11(5), 397–409 (1996)

  14. 14.

    Encinar, J. M., González, J. F., Martínez, G., & González, J. M. (2008). Two stages catalytic pyrolysis of olive oil waste. Fuel Process. Technol. 89(12), 1448–1455.

  15. 15.

    Encinar, J. M., Gonzalez, J. F., Martinez, G., Roman, S.: Catalytic pyrolysis of exhausted olive oil waste. J. Anal. Appl. Pyrolysis. 85(1), 197–203 (2009)

  16. 16.

    Faix, O., Meier, D., & Fortmann, I. (1990). Thermal degradation products of wood. Holz als Roh-und Werkstoff. 48(7–8), 281–285.

  17. 17.

    Fokaides, P. A., Polycarpou, P.: Exploitation of olive solid waste for energy purposes. Renewable energy, economies, emerging technologies and global practices, pp. 163–178. Nova Science Publishers, Inc, New York (2013)

  18. 18.

    Food and Agriculture Organization of the United Nations - Statistics Division,, last visited 02 December 2015.

  19. 19.

    Gaertner, C. A., Serrano-Ruiz, J. C., Braden, D. J., Dumesic, J. A.: Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J. Catal. 266(1), 71–78 (2009)

  20. 20.

    Galadima, A., Muraza, O.: In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers. Manage. 105, 338–354 (2015)

  21. 21.

    Iliopoulou, E. F., Stefanidis, S. D., Kalogiannis, K. G., Delimitis, A., Lappas, A. A., Triantafyllidis, K. S.: Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal., B. 127, 281–290 (2012)

  22. 22.

    ISO 17225-1 2014 Solid biofuels - Fuel specifications and classes - Part 1: General requirements, 2014.

  23. 23.

    López, M. B., Blanco, C. G., Martınez-Alonso, A., Tascón, J. M. D.: Composition of gases released during olive stones pyrolysis. J. Anal. Appl. Pyrolysis. 65(2), 313–322 (2002)

  24. 24.

    Mante, O. D., Rodriguez, J. A., Senanayake, S. D., Babu, S. P.: Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors. Green Chem. 17(4), 2362–2368 (2015)

  25. 25.

    McKendry, P.: Energy production from biomass (part 2): conversion technologies. Bioresour. Technol. 83(1), 47–54 (2002)

  26. 26.

    Niaounakis, M., & Halvadakis, C. P.: Olive processing waste management: literature review and patent survey 2nd Edition (Vol. 5). Elsevier, Amsterdam (2006)

  27. 27.

    Pütün, A. E., Uzun, B. B., Apaydin, E., & Pütün, E. (2005). Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Process. Technol. 87(1), 25–32.

  28. 28.

    Roig, A., Cayuela, M. L., Sánchez-Monedero, M. A.: An overview on olive mill wastes and their valorisation methods. Waste Manage. 26(9), 960–969 (2006)

  29. 29.

    Şensöz, S., Demiral, I., & Gerçel, H. F.: Olive bagasse (Olea europea L.) pyrolysis. Bioresour. Technol. 97(3), 429–436 (2006)

  30. 30.

    Sharma, A., Pareek, V., Zhang, D.: Biomass pyrolysis: a review of modelling, process parameters and catalytic studies. Renewable Sustainable Energy Rev. 50, 1081–1096 (2015)

  31. 31.

    Snell, R. W., Combs, E., Shanks, B. H.: Aldol condensations using bio-oil model compounds: the role of acid–base bi-functionality. Topics Catal. 53(15–18), 1248–1253 (2010)

  32. 32.

    Taralas, G., Kontominas, M. G.: Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production. J. Anal. Appl. Pyrolysis. 76(1), 109–116 (2006)

  33. 33.

    Uslu, A., Faaij, A. P., Bergman, P. C.: Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy. 33(8), 1206–1223 (2008)

  34. 34.

    Uzun, B. B., Pütün, A. E., Pütün, E.: Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature. J. Anal. Appl. Pyrolysis. 79(1), 147–153 (2007)

  35. 35.

    Yin, C. Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 90(3), 1128–1132 (2011)

  36. 36.

    Zabaniotou, A. A., Kalogiannis, G., Kappas, E., Karabelas, A. J.: Olive residues (cuttings and kernels) rapid pyrolysis product yields and kinetics. Biomass Bioenergy. 18(5), 411–420 (2000)

  37. 37.

    Zabaniotou, A., Ioannidou, O., Antonakou, E., Lappas, A.: Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass. Int. J. Hydrogen Energy. 33(10), 2433–2444 (2008)

  38. 38.

    Zanzi, R., Sjöström, K., Björnbom, E.: Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy. 23(5), 357–366 (2002)

  39. 39.

    Wang, D., Xiao, R., Zhang, H., He, G.: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. J. Anal. Appl. Pyrolysis. 89(2), 171–177 (2010)

  40. 40.

    Zhang, H., Xiao, R., Huang, H., Xiao, G.: Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour. Technol. 100(3), 1428–1434 (2009)

  41. 41.

    Zhang, H., Xiao, R., Jin, B., Xiao, G., Chen, R.: Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour. Technol. 140, 256–262 (2013)

  42. 42.

    Zhang, H., Zheng, J., Xiao, R., Jia, Y., Shen, D., Jin, B., Xiao, G.: Study on Pyrolysis of Pine Sawdust with Solid Base and Acid Mixed Catalysts by Thermogravimetry–Fourier Transform Infrared Spectroscopy and Pyrolysis–Gas Chromatography/Mass Spectrometry. Energy Fuels. 28(7), 4294–4299 (2014)

Download references


The authors wish to acknowledge the financial support from the BRISK project (Biofuels Research Infrastructure for Sharing Knowledge).

Author information

Correspondence to Paris A. Fokaides.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforou, E.A., Fokaides, P.A., Banks, S.W. et al. Comparative Study on Catalytic and Non-Catalytic Pyrolysis of Olive Mill Solid Wastes. Waste Biomass Valor 9, 301–313 (2018).

Download citation


  • Olive husk
  • Olive kernel
  • Fast pyrolysis
  • Catalytic pyrolysis
  • Bio-oil
  • Olive