Abstract
Aerobic treatment has been investigated as a method to enhance putrescible substrate degradation and biogas production through anaerobic digestion (AD). A series of aeration methods has been studied in different phases of anaerobic digestion (before, during, or at a late stage of AD). Several research groups have applied aeration together with anaerobic digestion to improve hydrolysis and increase substrate conversion efficiencies. Aeration has been proven to reduce volatile fatty acids (VFA) accumulation during AD, reducing pH inhibition for methanogens, and thus increasing process yields. Aeration may represent an effective method to reduce substrates’ toxicity (e.g. sulphur compounds), particularly when digestate, resulting from their anaerobic digestion, is destined for use on the land. However, a potential drawback is represented by decreased methane production observed as a consequence of excessive soluble COD consumption prior to the AD phase. Duration and intensity of aeration, substrate type, aeration method, temperature during aeration, and air application phase are deemed important factors capable of affecting the efficiency of this treatment. The present review aims to provide a comprehensive insight into research studies performed over the past decades to test the combination of aerobic treatment and anaerobic digestion of organic substrates.

References
Tsapekos, P., Kougias, P.G., Frison, A., Raga, R., Angelidaki, I.: Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 216, 545–552 (2016). doi:10.1016/j.biortech.2016.05.117
Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ. 123, 143–156 (2014). doi:10.1016/j.apenergy.2014.02.035
Dionisi, D., Silva, I.M.: Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology? Rev. Environ. Sci. Biotechnol. 15(2), 213–242 (2016). doi:10.1007/s11157-016-9393-y
Neumann, P., Pesante, S., Venegas, M., Vidal, G.: Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 15(2), 173–211 (2016). doi:10.1007/s11157-016-9396-8
Chu, A., Mavinic, D.S., Kelly, H.G., Ramey, W.D.: Volatile fatty-acid production in thermophilic aerobic digestion of sludge. Water Res. 28(7), 1513–1522 (1994). doi:10.1016/0043-1354(94)90217-8
Zhou, W., Imai, T., Ukita, M., Li, F., Yuasa, A.: Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66(5), 924–929 (2007). doi:10.1016/j.chemosphere.2006.06.004
Lim, J.W., Wang, J.Y.: Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag. 33(4), 813–819 (2013). doi:10.1016/j.wasman.2012.11.013
Lagerkvist, A., Pelkonen, M., Wikstrom, T.: Quick-start of full-scale anaerobic digestion (AD) using aeration. Waste Manag. 38, 102–104 (2015). doi:10.1016/j.wasman.2014.12.016
Ramos, I., Fdz-Polanco, M.: The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Waste Manag. 140, 80–85 (2013). doi:10.1016/j.biortech.2013.04.066
Charles, W., Walker, L., Cord-Ruwisch, R.: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100(8), 2329–2335 (2009). doi:10.1016/j.biortech.2008.11.051
Fu, S.F., Wang, F., Yuan, X.Z., Yang, Z.M., Luo, S.J., Wang, C.S., Guo, R.B.: The thermophilic (55 degrees C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresour. Technol. 175, 203–208 (2015). doi:10.1016/j.biortech.2014.10.072
Nguyen, P.H., Kuruparan, P., Visvanathan, C.: Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour. Technol. 98(2), 380–387 (2007). doi:10.1016/j.biortech.2005.12.018
Wu, C., Zhou, Y., Wang, P., Guo, S.: Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater. Bioresour. Technol. 194, 256–262 (2015). doi:10.1016/j.biortech.2015.06.072
Zhu, M., Lu, F., Hao, L.P., He, P.J., Shao, L.M.: Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag. 29(7), 2042–2050 (2009). doi:10.1016/j.wasman.2008.12.023
Peces, M., Astals, S., Clarke, W.P., Jensen, P.D.: Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge. Bioresour. Technol. 200, 631–638 (2015). doi:10.1016/j.biortech.2015.10.085
Ahn, Y.-M., Wi, J., Park, J.-K., Higuchi, S., Lee, N.-H.: Effect of pre-aeration on the anaerobic digestion of sewage sludge. Environ. Eng. Res. 19(1), 1–8 (2014). doi:10.4491/eer.2014.19.1.1
Kusch, S., Oechsner, H., Jungbluth, T.: Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol. 99(5), 1280–1292 (2008). doi:10.1016/j.biortech.2007.02.008
Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H., Park, J.M.: Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48, 1–14 (2014). doi:10.1016/j.watres.2013.06.041
Fu, S.F., Shi, X.S., Xu, X.H., Wang, C.S., Wang, L., Dai, M., Guo, R.B.: Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw. Bioresour. Technol. 186, 321–324 (2015). doi:10.1016/j.biortech.2015.03.053
Gonzalez-Gonzalez, A., Cuadros, F.: Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): an ecoefficient treatment. Food Bioprod. Process. 95, 339–345 (2015). doi:10.1016/j.fbp.2014.10.005
Mshandete, A., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, S.T., Mattiasson, B.: Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res. 39(8), 1569–1575 (2005). doi:10.1016/j.watres.2004.11.037
Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I.: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW). Chem. Eng. J. 168(1), 249–254 (2011). doi:10.1016/j.cej.2010.12.074
Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I.: Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): effect on anaerobic digestion. Chem. Eng. J. 172(1), 321–325 (2011). doi:10.1016/j.cej.2011.06.010
Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I., Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales Márquez, D., Romero García, L.I.: The effect of different pretreatments on biomethanation kinetics of industrial organic fraction of municipal solid wastes (OFMSW). Chem. Eng. J. 171(2), 411–417 (2011). doi:10.1016/j.cej.2011.03.095
Giordano, A., Sarli, V., Lavagnolo, M.C., Spagni, A.: Evaluation of aeration pretreatment to prepare an inoculum for the two-stage hydrogen and methane production process. Bioresour. Technol. 166, 211–218 (2014). doi:10.1016/j.biortech.2014.05.019
De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R.: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33(6), 1345–1361 (2013). doi:10.1016/j.wasman.2013.02.019
Favaro, L., Alibardi, L., Lavagnolo, M.C., Casella, S., Basaglia, M.: Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int. J. Hydrogen Energy 38(27), 11774–11779 (2013). doi:10.1016/j.ijhydene.2013.06.137
Tenbrummeler, E., Koster, I.W.: Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid-waste by an aerobic pretreatment step. Biol. Wastes 31(3), 199–210 (1990). doi:10.1016/0269-7483(90)90159-P
Miah, M.S., Tada, C., Yang, Y., Sawayama, S.: Aerobic thermophilic bacteria enhance biogas production. J. Mater. Cycles Waste 7(1), 48–54 (2005). doi:10.1007/s10163-004-0125-y
Botheju, D., Samarakoon, G., Chen, C., Bakke, R.: An experimental study on the effects of oxygen in bio-gasification; part 1. Paper presented at the international conference on renewable energies and power quality (ICREPQ10), Granada, Spain, March, 2010
Botheju, D., Bakke, R.: Oxygen effects in anaerobic digestion-A review. Open Waste Manag. J. 4, 1–19 (2011). doi:10.2174/1876400201104010001
Tartakovsky, B., Mehta, P., Bourque, J.S., Guiot, S.R.: Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour. Technol. 102(10), 5685–5691 (2011). doi:10.1016/j.biortech.2011.02.097
Tartakovsky, B., Mehta, P., Santoyo, G., Roy, C., Frigon, J.C., Guiot, S.R.: Electrolysis-enhanced co-digestion of switchgrass and cow manure. J. Chem. Technol. Biotechnol. 89(10), 1501–1506 (2014). doi:10.1002/jctb.4224
Chen, Y., Yu, B., Yin, C., Zhang, C., Dai, X., Yuan, H., Zhu, N.: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv. 6(2), 1581–1588 (2016). doi:10.1039/c5ra24134k
Casa, R., D’Annibale, A., Pieruccetti, F., Stazi, S.R., Sermanni, G.G., Cascio, B.L.: Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50(8), 959–966 (2003). doi:10.1016/S0045-6535(02)00707-5
El Hajjouji, H., Baddi, G.A., Yaacoubi, A., Hamdi, H., Winterton, P., Revel, J., Hafidi, M.: Optimisation of biodegradation conditions for the treatment of olive mill wastewater. Bioresour. Technol. 99(13), 5505–5510 (2008). doi:10.1016/j.biortech.2007.11.005
Zhang, L., Zhang, C., Cheng, Z., Yao, Y., Chen, J.: Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90(4), 1340–1347 (2013). doi:10.1016/j.chemosphere.2012.06.043
Khan, A.A., Wang, R.-F., Cao, W.-W., Doerge, D.R., Wennerstrom, D., Cerniglia, C.E.: Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67(8), 3577–3585 (2001). doi:10.1128/AEM.72.2.1045-1054.2006
Gavazza, S., Guzman, J.J.L., Angenent, L.T.: Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment. Biodegradation 26(2), 151–160 (2015). doi:10.1007/s10532-015-9723-8
Pandey, A., Singh, P., Iyengar, L.: Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad. 59(2), 73–84 (2007). doi:10.1016/j.ibiod.2006.08.006
Vallini, G., Pera, A., Cecchi, F., Briglia, M., Perghem, F.: Compost detoxification of vegetable-tannery sludge. Waste Manag. Res. 7(3), 277–290 (1989). doi:10.1016/0734-242X(89)90041-4
Rafieenia, R., Girotto, F., Peng, W., Cossu, R., Pivato, A., Raga, R., Lavagnolo, M.C.: Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag. (2016). doi:10.1016/j.wasman.2016.10.028
Ramos, I., Perez, R., Reinoso, M., Torio, R., Fdz-Polanco, M.: Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour. Technol. 164, 338–346 (2014). doi:10.1016/j.biortech.2014.04.109
Lim, J.W., Chiam, J.A., Wang, J.Y.: Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 171, 132–138 (2014). doi:10.1016/j.biortech.2014.08.050
Fu, S.-F., Wang, F., Shi, X.-S., Guo, R.-B.: Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem. Eng. J. 287, 523–528 (2016). doi:10.1016/j.cej.2015.11.070
Xu, S., Selvam, A., Wong, J.W.: Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag. 34(2), 363–369 (2014). doi:10.1016/j.wasman.2013.10.038
Botheju, D., Samarakoon, G., Chen, C., Bakke, R.: An experimental study on the effects of oxygen in bio-gasification; part 2. Paper presented at the international conference on renewable energies and power quality (ICREPQ 10), Granada, Spain, March, 2010
Khongsumran, O., Intanoo, P., Rangsunvigit, P., Chavadej, S., Leethochawalit, M.: Enhancement of anaerobic digestion of cellulosic fraction in cassava production wastewater by microaeration. Chem. Eng. Trans. 39, 553–558 (2014). doi:10.3303/cet1439093
Diaz, I., Donoso-Bravo, A., Fdz-Polanco, M.: Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour. Technol. 102(21), 10139–10142 (2011). doi:10.1016/j.biortech.2011.07.096
Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors. Bioresour. Technol. 101(8), 2818–2824 (2010). doi:10.1016/j.biortech.2009.10.083
Cesaro, A., Belgiorno, V.: Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240, 24–37 (2014). doi:10.1016/j.cej.2013.11.055
Krayzelova, L., Bartacek, J., Diaz, I., Jeison, D., Volcke, E.I.P., Jenicek, P.: Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Rev. Environ. Sci. Bio-Technol. 14(4), 703–725 (2015). doi:10.1007/s11157-015-9386-2
Nghiem, L.D., Manassa, P., Dawson, M., Fitzgerald, S.K.: Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour. Technol. 173, 443–447 (2014). doi:10.1016/j.biortech.2014.09.052
Fdz-Polanco, M., Diaz, I., Perez, S.I., Lopes, A.C., Fdz-Polanco, F.: Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci. Technol. 60(12), 3045–3050 (2009). doi:10.2166/wst.2009.738
Ramos, I., Pena, M., Fdz-Polanco, M.: Where does the removal of H2S from biogas occur in microaerobic reactors? Bioresour. Technol. 166, 151–157 (2014). doi:10.1016/j.biortech.2014.05.058
Díaz, I., Lopes, A., Pérez, S., Fdz-Polanco, M.: Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters. Water Sci. Technol. 64(1), 233–238 (2011). doi:10.2166/wst.2011.648
Ramos, I., Díaz, I., Fdz-Polanco, M.: The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge. Water Sci. Technol. 66(10), 2258–2264 (2012). doi:10.2166/wst.2012.457
Krayzelova, L., Bartacek, J., Kolesarova, N., Jenicek, P.: Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour. Technol. 172, 297–302 (2014)
Jenicek, P., Keclik, F., Maca, J., Bindzar, J.: Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci. Technol. (2008). doi:10.2166/wst.2008.493
Tomei, M.C., Angelucci, D.M., Levantesi, C.: Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: analysis of process performance and hygienization potential. Sci. Total Environ. 545, 453–464 (2016). doi:10.1016/j.scitotenv.2015.12.053
Abdullahi, Y.A., Akunna, J.C., White, N.A., Hallett, P.D., Wheatley, R.: Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 99(18), 8631–8636 (2008). doi:10.1016/j.biortech.2008.04.027
Kaparaju, P.L.N., Rintala, J.A.: Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol. 27(6), 623–633 (2006). doi:10.1080/09593332708618676
Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energ. 55, 260–265 (2013). doi:10.1016/j.renene.2012.12.044
Ghaly, A., El-Taweel, A.: Kinetics of batch production of ethanol from cheese whey. Biomass Bioenerg. 6(6), 465–478 (1994). doi:10.1016/0961-9534(94)00079-9
Tang, Y., Shigematsu, T., Morimura, S., Kida, K.: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res. 38(10), 2537–2550 (2004). doi:10.1016/j.watres.2004.03.012
Pivato, A., Vanin, S., Raga, R., Lavagnolo, M.C., Barausse, A., Rieple, A., Laurent, A., Cossu, R.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 49, 378–389 (2016). doi:10.1016/j.wasman.2015.12.009
Pivato, A., Raga, R., Lavagnolo, M.C., Vanin, S., Barausse, A., Palmeri, L., Cossu, R.: Assessment of compost dosage in farmland through ecotoxicological tests. J. Mater. Cycles Waste Manag. 18(2), 303–317 (2016). doi:10.1007/s10163-014-0333-z
Pivato, A., Raga, R., Vanin, S., Rossi, M.: Assessment of compost quality for its environmentally safe use by means of an ecotoxicological test on a soil organism. J. Mater. Cycles Waste Manag. 16(4), 763–774 (2014). doi:10.1007/s10163-013-0216-8
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Girotto, F., Peng, W., Rafieenia, R. et al. Effect of Aeration Applied During Different Phases of Anaerobic Digestion. Waste Biomass Valor 9, 161–174 (2018). https://doi.org/10.1007/s12649-016-9785-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-016-9785-9