Skip to main content

Advertisement

Log in

Effect of Aeration Applied During Different Phases of Anaerobic Digestion

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Aerobic treatment has been investigated as a method to enhance putrescible substrate degradation and biogas production through anaerobic digestion (AD). A series of aeration methods has been studied in different phases of anaerobic digestion (before, during, or at a late stage of AD). Several research groups have applied aeration together with anaerobic digestion to improve hydrolysis and increase substrate conversion efficiencies. Aeration has been proven to reduce volatile fatty acids (VFA) accumulation during AD, reducing pH inhibition for methanogens, and thus increasing process yields. Aeration may represent an effective method to reduce substrates’ toxicity (e.g. sulphur compounds), particularly when digestate, resulting from their anaerobic digestion, is destined for use on the land. However, a potential drawback is represented by decreased methane production observed as a consequence of excessive soluble COD consumption prior to the AD phase. Duration and intensity of aeration, substrate type, aeration method, temperature during aeration, and air application phase are deemed important factors capable of affecting the efficiency of this treatment. The present review aims to provide a comprehensive insight into research studies performed over the past decades to test the combination of aerobic treatment and anaerobic digestion of organic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Tsapekos, P., Kougias, P.G., Frison, A., Raga, R., Angelidaki, I.: Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 216, 545–552 (2016). doi:10.1016/j.biortech.2016.05.117

    Article  Google Scholar 

  2. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ. 123, 143–156 (2014). doi:10.1016/j.apenergy.2014.02.035

    Article  Google Scholar 

  3. Dionisi, D., Silva, I.M.: Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology? Rev. Environ. Sci. Biotechnol. 15(2), 213–242 (2016). doi:10.1007/s11157-016-9393-y

    Article  Google Scholar 

  4. Neumann, P., Pesante, S., Venegas, M., Vidal, G.: Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 15(2), 173–211 (2016). doi:10.1007/s11157-016-9396-8

    Article  Google Scholar 

  5. Chu, A., Mavinic, D.S., Kelly, H.G., Ramey, W.D.: Volatile fatty-acid production in thermophilic aerobic digestion of sludge. Water Res. 28(7), 1513–1522 (1994). doi:10.1016/0043-1354(94)90217-8

    Article  Google Scholar 

  6. Zhou, W., Imai, T., Ukita, M., Li, F., Yuasa, A.: Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66(5), 924–929 (2007). doi:10.1016/j.chemosphere.2006.06.004

    Article  Google Scholar 

  7. Lim, J.W., Wang, J.Y.: Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag. 33(4), 813–819 (2013). doi:10.1016/j.wasman.2012.11.013

    Article  Google Scholar 

  8. Lagerkvist, A., Pelkonen, M., Wikstrom, T.: Quick-start of full-scale anaerobic digestion (AD) using aeration. Waste Manag. 38, 102–104 (2015). doi:10.1016/j.wasman.2014.12.016

    Article  Google Scholar 

  9. Ramos, I., Fdz-Polanco, M.: The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Waste Manag. 140, 80–85 (2013). doi:10.1016/j.biortech.2013.04.066

    Google Scholar 

  10. Charles, W., Walker, L., Cord-Ruwisch, R.: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100(8), 2329–2335 (2009). doi:10.1016/j.biortech.2008.11.051

    Article  Google Scholar 

  11. Fu, S.F., Wang, F., Yuan, X.Z., Yang, Z.M., Luo, S.J., Wang, C.S., Guo, R.B.: The thermophilic (55 degrees C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresour. Technol. 175, 203–208 (2015). doi:10.1016/j.biortech.2014.10.072

    Article  Google Scholar 

  12. Nguyen, P.H., Kuruparan, P., Visvanathan, C.: Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour. Technol. 98(2), 380–387 (2007). doi:10.1016/j.biortech.2005.12.018

    Article  Google Scholar 

  13. Wu, C., Zhou, Y., Wang, P., Guo, S.: Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater. Bioresour. Technol. 194, 256–262 (2015). doi:10.1016/j.biortech.2015.06.072

    Article  Google Scholar 

  14. Zhu, M., Lu, F., Hao, L.P., He, P.J., Shao, L.M.: Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag. 29(7), 2042–2050 (2009). doi:10.1016/j.wasman.2008.12.023

    Article  Google Scholar 

  15. Peces, M., Astals, S., Clarke, W.P., Jensen, P.D.: Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge. Bioresour. Technol. 200, 631–638 (2015). doi:10.1016/j.biortech.2015.10.085

    Article  Google Scholar 

  16. Ahn, Y.-M., Wi, J., Park, J.-K., Higuchi, S., Lee, N.-H.: Effect of pre-aeration on the anaerobic digestion of sewage sludge. Environ. Eng. Res. 19(1), 1–8 (2014). doi:10.4491/eer.2014.19.1.1

    Article  Google Scholar 

  17. Kusch, S., Oechsner, H., Jungbluth, T.: Biogas production with horse dung in solid-phase digestion systems. Bioresour. Technol. 99(5), 1280–1292 (2008). doi:10.1016/j.biortech.2007.02.008

    Article  Google Scholar 

  18. Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H., Park, J.M.: Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48, 1–14 (2014). doi:10.1016/j.watres.2013.06.041

    Article  Google Scholar 

  19. Fu, S.F., Shi, X.S., Xu, X.H., Wang, C.S., Wang, L., Dai, M., Guo, R.B.: Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw. Bioresour. Technol. 186, 321–324 (2015). doi:10.1016/j.biortech.2015.03.053

    Article  Google Scholar 

  20. Gonzalez-Gonzalez, A., Cuadros, F.: Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): an ecoefficient treatment. Food Bioprod. Process. 95, 339–345 (2015). doi:10.1016/j.fbp.2014.10.005

    Article  Google Scholar 

  21. Mshandete, A., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, S.T., Mattiasson, B.: Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res. 39(8), 1569–1575 (2005). doi:10.1016/j.watres.2004.11.037

    Article  Google Scholar 

  22. Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I.: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW). Chem. Eng. J. 168(1), 249–254 (2011). doi:10.1016/j.cej.2010.12.074

    Article  Google Scholar 

  23. Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I.: Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): effect on anaerobic digestion. Chem. Eng. J. 172(1), 321–325 (2011). doi:10.1016/j.cej.2011.06.010

    Article  Google Scholar 

  24. Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales, D., Romero, L.I., Fdez.-Güelfo, L.A., Álvarez-Gallego, C., Sales Márquez, D., Romero García, L.I.: The effect of different pretreatments on biomethanation kinetics of industrial organic fraction of municipal solid wastes (OFMSW). Chem. Eng. J. 171(2), 411–417 (2011). doi:10.1016/j.cej.2011.03.095

    Article  Google Scholar 

  25. Giordano, A., Sarli, V., Lavagnolo, M.C., Spagni, A.: Evaluation of aeration pretreatment to prepare an inoculum for the two-stage hydrogen and methane production process. Bioresour. Technol. 166, 211–218 (2014). doi:10.1016/j.biortech.2014.05.019

    Article  Google Scholar 

  26. De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R.: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33(6), 1345–1361 (2013). doi:10.1016/j.wasman.2013.02.019

    Article  Google Scholar 

  27. Favaro, L., Alibardi, L., Lavagnolo, M.C., Casella, S., Basaglia, M.: Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int. J. Hydrogen Energy 38(27), 11774–11779 (2013). doi:10.1016/j.ijhydene.2013.06.137

    Article  Google Scholar 

  28. Tenbrummeler, E., Koster, I.W.: Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid-waste by an aerobic pretreatment step. Biol. Wastes 31(3), 199–210 (1990). doi:10.1016/0269-7483(90)90159-P

    Article  Google Scholar 

  29. Miah, M.S., Tada, C., Yang, Y., Sawayama, S.: Aerobic thermophilic bacteria enhance biogas production. J. Mater. Cycles Waste 7(1), 48–54 (2005). doi:10.1007/s10163-004-0125-y

    Article  Google Scholar 

  30. Botheju, D., Samarakoon, G., Chen, C., Bakke, R.: An experimental study on the effects of oxygen in bio-gasification; part 1. Paper presented at the international conference on renewable energies and power quality (ICREPQ10), Granada, Spain, March, 2010

  31. Botheju, D., Bakke, R.: Oxygen effects in anaerobic digestion-A review. Open Waste Manag. J. 4, 1–19 (2011). doi:10.2174/1876400201104010001

    Article  Google Scholar 

  32. Tartakovsky, B., Mehta, P., Bourque, J.S., Guiot, S.R.: Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour. Technol. 102(10), 5685–5691 (2011). doi:10.1016/j.biortech.2011.02.097

    Article  Google Scholar 

  33. Tartakovsky, B., Mehta, P., Santoyo, G., Roy, C., Frigon, J.C., Guiot, S.R.: Electrolysis-enhanced co-digestion of switchgrass and cow manure. J. Chem. Technol. Biotechnol. 89(10), 1501–1506 (2014). doi:10.1002/jctb.4224

    Article  Google Scholar 

  34. Chen, Y., Yu, B., Yin, C., Zhang, C., Dai, X., Yuan, H., Zhu, N.: Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv. 6(2), 1581–1588 (2016). doi:10.1039/c5ra24134k

    Article  Google Scholar 

  35. Casa, R., D’Annibale, A., Pieruccetti, F., Stazi, S.R., Sermanni, G.G., Cascio, B.L.: Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50(8), 959–966 (2003). doi:10.1016/S0045-6535(02)00707-5

    Article  Google Scholar 

  36. El Hajjouji, H., Baddi, G.A., Yaacoubi, A., Hamdi, H., Winterton, P., Revel, J., Hafidi, M.: Optimisation of biodegradation conditions for the treatment of olive mill wastewater. Bioresour. Technol. 99(13), 5505–5510 (2008). doi:10.1016/j.biortech.2007.11.005

    Article  Google Scholar 

  37. Zhang, L., Zhang, C., Cheng, Z., Yao, Y., Chen, J.: Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90(4), 1340–1347 (2013). doi:10.1016/j.chemosphere.2012.06.043

    Article  Google Scholar 

  38. Khan, A.A., Wang, R.-F., Cao, W.-W., Doerge, D.R., Wennerstrom, D., Cerniglia, C.E.: Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67(8), 3577–3585 (2001). doi:10.1128/AEM.72.2.1045-1054.2006

    Article  Google Scholar 

  39. Gavazza, S., Guzman, J.J.L., Angenent, L.T.: Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment. Biodegradation 26(2), 151–160 (2015). doi:10.1007/s10532-015-9723-8

    Article  Google Scholar 

  40. Pandey, A., Singh, P., Iyengar, L.: Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad. 59(2), 73–84 (2007). doi:10.1016/j.ibiod.2006.08.006

    Article  Google Scholar 

  41. Vallini, G., Pera, A., Cecchi, F., Briglia, M., Perghem, F.: Compost detoxification of vegetable-tannery sludge. Waste Manag. Res. 7(3), 277–290 (1989). doi:10.1016/0734-242X(89)90041-4

    Article  Google Scholar 

  42. Rafieenia, R., Girotto, F., Peng, W., Cossu, R., Pivato, A., Raga, R., Lavagnolo, M.C.: Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag. (2016). doi:10.1016/j.wasman.2016.10.028

    Google Scholar 

  43. Ramos, I., Perez, R., Reinoso, M., Torio, R., Fdz-Polanco, M.: Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour. Technol. 164, 338–346 (2014). doi:10.1016/j.biortech.2014.04.109

    Article  Google Scholar 

  44. Lim, J.W., Chiam, J.A., Wang, J.Y.: Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 171, 132–138 (2014). doi:10.1016/j.biortech.2014.08.050

    Article  Google Scholar 

  45. Fu, S.-F., Wang, F., Shi, X.-S., Guo, R.-B.: Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem. Eng. J. 287, 523–528 (2016). doi:10.1016/j.cej.2015.11.070

    Article  Google Scholar 

  46. Xu, S., Selvam, A., Wong, J.W.: Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag. 34(2), 363–369 (2014). doi:10.1016/j.wasman.2013.10.038

    Article  Google Scholar 

  47. Botheju, D., Samarakoon, G., Chen, C., Bakke, R.: An experimental study on the effects of oxygen in bio-gasification; part 2. Paper presented at the international conference on renewable energies and power quality (ICREPQ 10), Granada, Spain, March, 2010

  48. Khongsumran, O., Intanoo, P., Rangsunvigit, P., Chavadej, S., Leethochawalit, M.: Enhancement of anaerobic digestion of cellulosic fraction in cassava production wastewater by microaeration. Chem. Eng. Trans. 39, 553–558 (2014). doi:10.3303/cet1439093

    Google Scholar 

  49. Diaz, I., Donoso-Bravo, A., Fdz-Polanco, M.: Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour. Technol. 102(21), 10139–10142 (2011). doi:10.1016/j.biortech.2011.07.096

    Article  Google Scholar 

  50. Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors. Bioresour. Technol. 101(8), 2818–2824 (2010). doi:10.1016/j.biortech.2009.10.083

    Article  Google Scholar 

  51. Cesaro, A., Belgiorno, V.: Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240, 24–37 (2014). doi:10.1016/j.cej.2013.11.055

    Article  Google Scholar 

  52. Krayzelova, L., Bartacek, J., Diaz, I., Jeison, D., Volcke, E.I.P., Jenicek, P.: Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Rev. Environ. Sci. Bio-Technol. 14(4), 703–725 (2015). doi:10.1007/s11157-015-9386-2

    Article  Google Scholar 

  53. Nghiem, L.D., Manassa, P., Dawson, M., Fitzgerald, S.K.: Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour. Technol. 173, 443–447 (2014). doi:10.1016/j.biortech.2014.09.052

    Article  Google Scholar 

  54. Fdz-Polanco, M., Diaz, I., Perez, S.I., Lopes, A.C., Fdz-Polanco, F.: Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci. Technol. 60(12), 3045–3050 (2009). doi:10.2166/wst.2009.738

    Article  Google Scholar 

  55. Ramos, I., Pena, M., Fdz-Polanco, M.: Where does the removal of H2S from biogas occur in microaerobic reactors? Bioresour. Technol. 166, 151–157 (2014). doi:10.1016/j.biortech.2014.05.058

    Article  Google Scholar 

  56. Díaz, I., Lopes, A., Pérez, S., Fdz-Polanco, M.: Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters. Water Sci. Technol. 64(1), 233–238 (2011). doi:10.2166/wst.2011.648

    Article  Google Scholar 

  57. Ramos, I., Díaz, I., Fdz-Polanco, M.: The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge. Water Sci. Technol. 66(10), 2258–2264 (2012). doi:10.2166/wst.2012.457

    Article  Google Scholar 

  58. Krayzelova, L., Bartacek, J., Kolesarova, N., Jenicek, P.: Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour. Technol. 172, 297–302 (2014)

    Article  Google Scholar 

  59. Jenicek, P., Keclik, F., Maca, J., Bindzar, J.: Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci. Technol. (2008). doi:10.2166/wst.2008.493

    Google Scholar 

  60. Tomei, M.C., Angelucci, D.M., Levantesi, C.: Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: analysis of process performance and hygienization potential. Sci. Total Environ. 545, 453–464 (2016). doi:10.1016/j.scitotenv.2015.12.053

    Article  Google Scholar 

  61. Abdullahi, Y.A., Akunna, J.C., White, N.A., Hallett, P.D., Wheatley, R.: Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 99(18), 8631–8636 (2008). doi:10.1016/j.biortech.2008.04.027

    Article  Google Scholar 

  62. Kaparaju, P.L.N., Rintala, J.A.: Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol. 27(6), 623–633 (2006). doi:10.1080/09593332708618676

    Article  Google Scholar 

  63. Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energ. 55, 260–265 (2013). doi:10.1016/j.renene.2012.12.044

    Article  Google Scholar 

  64. Ghaly, A., El-Taweel, A.: Kinetics of batch production of ethanol from cheese whey. Biomass Bioenerg. 6(6), 465–478 (1994). doi:10.1016/0961-9534(94)00079-9

    Article  Google Scholar 

  65. Tang, Y., Shigematsu, T., Morimura, S., Kida, K.: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res. 38(10), 2537–2550 (2004). doi:10.1016/j.watres.2004.03.012

    Article  Google Scholar 

  66. Pivato, A., Vanin, S., Raga, R., Lavagnolo, M.C., Barausse, A., Rieple, A., Laurent, A., Cossu, R.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 49, 378–389 (2016). doi:10.1016/j.wasman.2015.12.009

    Article  Google Scholar 

  67. Pivato, A., Raga, R., Lavagnolo, M.C., Vanin, S., Barausse, A., Palmeri, L., Cossu, R.: Assessment of compost dosage in farmland through ecotoxicological tests. J. Mater. Cycles Waste Manag. 18(2), 303–317 (2016). doi:10.1007/s10163-014-0333-z

    Article  Google Scholar 

  68. Pivato, A., Raga, R., Vanin, S., Rossi, M.: Assessment of compost quality for its environmentally safe use by means of an ecotoxicological test on a soil organism. J. Mater. Cycles Waste Manag. 16(4), 763–774 (2014). doi:10.1007/s10163-013-0216-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Girotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girotto, F., Peng, W., Rafieenia, R. et al. Effect of Aeration Applied During Different Phases of Anaerobic Digestion. Waste Biomass Valor 9, 161–174 (2018). https://doi.org/10.1007/s12649-016-9785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9785-9

Keywords

Navigation