Waste and Biomass Valorization

, Volume 9, Issue 3, pp 391–400 | Cite as

Synthesis and Properties of Feather Keratin-Based Superabsorbent Hydrogels

Original Paper
  • 116 Downloads

Abstract

The present work reports significant improvement in the performance of keratin based hydrogels. These hydrogels were synthesized by graft copolymerization of acrylic acid monomers on the hydrolyzed keratin proteins’ backbones in the presence of a crosslinker (N,N-methylenebis (acrylamide)) and initiators (sodium bisulfite and potassium persulfate). The grafting was confirmed by means of Fourier transform infrared spectroscopy. The contributions of the crosslinker, initiator and neutralization degree to the hydrogels were investigated through differential scanning calorimetry, swelling tests, and scanning electron microscopy. The highest equilibrium swelling of hydrogel in distilled water reached 501 g/g of hydrogel in 48 h. The swelling properties of the optimized hydrogel formulation were also studied at various pH and saline concentrations.

Graphical Abstract

Keywords

Hydrogels Keratin Superabsorbent polymer Characterization 

Notes

Acknowledgements

This research was funded by the Fonds de recherche du Québec-Nature et technologies (FRQNT). We gratefully acknowledge the use of laboratory equipment of Dr. Valérie Orsat and Dr. Michael Ngadi.

References

  1. 1.
    Hill, P., Brantley, H., Van Dyke, M.: Some properties of keratin biomaterials: kerateines. Biomaterials 31(4), 585–593 (2010)CrossRefGoogle Scholar
  2. 2.
    Yang, Y., Tong, Z., Geng, Y., Li, Y., Zhang, M.: Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J. Agric. Food Chem. 61(34), 8166–8174 (2013)CrossRefGoogle Scholar
  3. 3.
    Singh, B., Sharma, D.K., Dhiman, A., Gupta, A.: Applications of natural polysaccharide-based beads for slow release herbicide formulation. Toxicol. Environ. Chem. 93(4), 616–622 (2011)CrossRefGoogle Scholar
  4. 4.
    Sojka, R.E., Lentz, R.D.: Reducing furrow irrigation erosion with polyacrylamide (PAM). JPA 10(1), 47–52 (1997)CrossRefGoogle Scholar
  5. 5.
    Bakass, M., Mokhlisse, A., Lallemant, M.: Absorption and desorption of liquid water by a superabsorbent polymer: effect of polymer in the drying of the soil and the quality of certain plants. J. Appl. Polym. Sci. 83(2), 234–243 (2002)CrossRefGoogle Scholar
  6. 6.
    Pourjavadi, A., Ghasemzadeh, H., Soleyman, R.: Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci. 105(5), 2631–2639 (2007)CrossRefGoogle Scholar
  7. 7.
    Zohuriaan-Mehr, M.J., Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. 17(6), 451–477 (2008)Google Scholar
  8. 8.
    Pourjavadi, A., Kurdtabar, M., Mahdavinia, G.R., Hosseinzadeh, H.: Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym. Bull. 57(6), 813–824 (2006)CrossRefGoogle Scholar
  9. 9.
    Pourjavadi, A., Salimi, H.: New protein-based hydrogel with superabsorbing properties: effect of monomer ratio on swelling behavior and kinetics. Ind. Eng. Chem. Res. 47(23), 9206–9213 (2008)CrossRefGoogle Scholar
  10. 10.
    Zhang, B., Cui, Y., Yin, G., Li, X., You, Y.: Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. Int. J. Polym. Mater. Polym. Biomater. 59(12), 1018–1032 (2010)CrossRefGoogle Scholar
  11. 11.
    Shi, W., Dumont, M.-J., Ly, E.B.: Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur. Polym. J. 54, 172–180 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, M., Jin, E., Zhang, L.: Effects of graft modification on the water solubility, apparent viscosity, and adhesion of feather keratin for warp sizing. J. Text. Inst. 107, 395–404 (2016)CrossRefGoogle Scholar
  13. 13.
    Hu, X., Cebe, P., Weiss, A.S., Omenetto, F., Kaplan, D.L.: Protein-based composite materials. Mater. Today 15(5), 208–215 (2012)CrossRefGoogle Scholar
  14. 14.
    McGovern, V.: Recycling poultry feathers: more bang for the cluck. Environ. Health Perspect. 108(8), A366–A369 (2000)CrossRefGoogle Scholar
  15. 15.
    Ullah, A., Wu, J.: Feather fiber-based thermoplastics: effects of different plasticizers on material properties. Macromol. Mater. Eng. 298(2), 153–162 (2013)CrossRefGoogle Scholar
  16. 16.
    Reddy, N., Chen, L., Yang, Y.: Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C 33(3), 1203–1208 (2013)CrossRefGoogle Scholar
  17. 17.
    Aluigi, A., Varesano, A., Montarsolo, A., Vineis, C., Ferrero, F., Mazzuchetti, G., et al.: Electrospinning of keratin/poly(ethylene oxide)blend nanofibers. J. Appl. Polym. Sci. 104(2), 863–870 (2007)CrossRefGoogle Scholar
  18. 18.
    Hadas, A., Kautsky, L.: Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil. Res. 38(2), 165–170 (1994)CrossRefGoogle Scholar
  19. 19.
    Gurav, R., Jadhav, J.: A novel source of biofertilizer from feather biomass for banana cultivation. Environ. Sci. Pollut. Res. 20(7), 4532–4539 (2013)CrossRefGoogle Scholar
  20. 20.
    Kavitha, A., Boopalan, K., Radhakrishnan, G., Sankaran, S., Das, B.N., Sastry, T.P.: Preparation of feather keratin hydrolyzate-gelatin composites and their graft copolymers. J Macromol. Sci. Part A 42(12), 1703–1713 (2005)CrossRefGoogle Scholar
  21. 21.
    García-Sabido, D., López-Mesas, M., Carrillo-Navarrete, F.: Chicken feather fibres waste as a low-cost biosorbent of acid Blue 80 dye. Desalin. Water Treat. 57, 3732–3740 (2016)CrossRefGoogle Scholar
  22. 22.
    Ghosh, A., Collie, S.R.: Keratinous materials as novel absorbent systems for toxic pollutants. Def. Sci. J. 64(3), 209–221 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhou, L.-T., Yang, G., Yang, X.-X., Cao, Z.-J., Zhou, M.-H.: Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ. Sci. Pollut. Res. 21(8), 5730–5736 (2014)CrossRefGoogle Scholar
  24. 24.
    Lin, H., Sritham, E., Lim, S., Cui, Y., Gunasekaran, S.: Synthesis and characterization of pH- and salt-sensitive hydrogel based on chemically modified poultry feather protein isolate. J. Appl. Polym. Sci. 116(1), 602–609 (2010)CrossRefGoogle Scholar
  25. 25.
    Ozaki, Y., Takagi, Y., Mori, H., Hara, M.: Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. Mater. Sci. Eng. C 42, 146–154 (2014)CrossRefGoogle Scholar
  26. 26.
    Calvo, P., Nelson, L., Kloepper, J.: Agricultural uses of plant biostimulants. Plant Soil 383(1–2), 3–41 (2014)CrossRefGoogle Scholar
  27. 27.
    Arai, K.M., Takahashi, R., Yokote, Y., Akahane, K.: Amino-acid sequence of feather keratin from fowl. Eur. J. Biochem. 132(3), 501–507 (1983)CrossRefGoogle Scholar
  28. 28.
    Erra, P., Gómez, N., Dolcet, L.M., Juliá, M.R., Lewis, D.M., Willoughby, J.H.: FTIR analysis to study chemical changes in wool following a sulfitolysis treatment1. Text. Res. J. 67(6), 397–401 (1997)CrossRefGoogle Scholar
  29. 29.
    Woodin, A.M.: Structure and composition of soluble feather keratin. Biochem. J. 63(4), 576–581 (1956)CrossRefGoogle Scholar
  30. 30.
    Liu, P., Xu, H., Mi, X., Xu, L., Yang, Y.: Oxidized sucrose: a potent and biocompatible crosslinker for three-dimensional fibrous protein scaffolds. Macromol. Mater. Eng. 300(4), 414–422 (2015)CrossRefGoogle Scholar
  31. 31.
    Lee, L.D., Baden, H.P.: Organisation of the polypeptide chains in mammalian keratin. Nature 264(5584), 377–379 (1976)CrossRefGoogle Scholar
  32. 32.
    Gurd, F.R.: Carboxymethylation. Methods Enzymol. 11, 532–541 (1967)CrossRefGoogle Scholar
  33. 33.
    Schrooyen, P.M.M., Dijkstra, P.J., Oberthur, R.C., Bantjes, A., Feijen, J.: Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J. Agric. Food Chem. 48(9), 4326–4334 (2000)CrossRefGoogle Scholar
  34. 34.
    Park, T.G.: Degradation of poly(d,l-lactic acid) microspheres: effect of molecular weight. J. Control. Release. 30(2), 161–173 (1994)CrossRefGoogle Scholar
  35. 35.
    Liardon, R., Ledermann, S.: Racemization kinetics of free and protein-bound amino acids under moderate alkaline treatment. J. Agric. Food Chem. 34(3), 557–565 (1986)CrossRefGoogle Scholar
  36. 36.
    Bardajee, G., Pourjavadi, A., Soleyman, R.: Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J. Polym. Res. 18(3), 337–346 (2011)CrossRefGoogle Scholar
  37. 37.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)CrossRefGoogle Scholar
  38. 38.
    Tsuda, Y., Nomura, Y.: Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim. Sci. J. 85(2), 180–185 (2014)CrossRefGoogle Scholar
  39. 39.
    Pourjavadi, A., Ayyari, M., Amini-Fazl, M.S.: Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J. 44(4), 1209–1216 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhang, B., Cui, Y., Yin, G., Li, X., Liao, L., Cai, X.: Synthesis and swelling properties of protein-poly(acrylic acid-co-acrylamide) superabsorbent composite. Polym. Compos. 32(5), 683–691 (2011)CrossRefGoogle Scholar
  41. 41.
    Bagheri Marandi, G., Mahdavinia, G., Ghafary, S.: Swelling behavior of novel protein-based superabsorbent nanocomposite. J. Appl. Polym. Sci. 120(2), 1170–1179 (2011)CrossRefGoogle Scholar
  42. 42.
    Silverstein, R., Webster, F.: Spectrometric identification of organic compounds. Wiley, New York (2006)Google Scholar
  43. 43.
    Iqbal, H.M.N., Kyazze, G., Tron, T., Keshavarz, T.: Laccase-assisted approach to graft multifunctional materials of interest: keratin-EC based novel composites and their characterisation. Macromol. Mater. Eng. 300, 712–720 (2015)CrossRefGoogle Scholar
  44. 44.
    Maurer, J.J., Eustace, D.J., Ratcliffe, C.T.: Thermal characterization of poly(acrylic acid). Macromolecules 20(1), 196–202 (1987)CrossRefGoogle Scholar
  45. 45.
    Stutz, H., Illers, K.H., Mertes, J.: A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers. J. Polym. Sci. Part B: Polym. Phys. 28(9), 1483–1498 (1990)CrossRefGoogle Scholar
  46. 46.
    Kabiri, K., Zohuriaan-Mehr, M.J.: Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol. Mater. Eng. 289(7), 653–661 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bryan Wattie
    • 1
  • Marie-Josée Dumont
    • 1
  • Mark Lefsrud
    • 1
  1. 1.Department of Bioresource EngineeringMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations