Skip to main content
Log in

Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

High demand of natural vanillin in the worldwide market leads to the production of biovanillin using lignocellulosic biomass. In this study, alkaline hydrolysate of oil palm empty fruit bunch (OPEFB) was used as potential substrate for biovanillin production via two-step bioconversion. Based on the results obtained, 41 % vanillic acid and 39 % biovanillin were produced using alkaline hydrolysate of OPEFB as substrate. Besides that, formulated alkaline hydrolysate of OPEFB was employed based on the phenolic compounds composition in the alkaline hydrolysate of OPEFB in order to evaluate the significance of those compounds towards vanillic acid production using two level factorial design. Ferulic acid is the major component for the production of vanillic acid production with the significantly highest molar yield conversion of 53 %. For the combined interactions, the model showed that the combination of ferulic acid/p-coumaric acid and ferulic acid/p-hydroxybenzoic acid had antagonistic interaction as it significantly led to the reduction of vanillic acid. Vanillic acid as the intermediate compound in the two-step bioconversion of OPEFB provides a potential substrate for biovanillin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jamil, A., Salleh, M.M.: Potential use of lemongrass waste for biovanillin production by locally isolated fungi using two step bioconversion process. In: The Third International Biotechnology and Biodiversity Conference & Exhibition (BIOJOHOR 2012), pp. 1–4 (2012)

  2. National Innovation Agency Malaysia: National Biomass Strategy 2020: new wealth creation for Malaysia’s biomass industry. https://biobs.jrc.ec.europa.eu/sites/default/files/generated/files/policy/BiomassStrategy2013.pdf. Accessed 28 Dec 2014

  3. Harmsen, P., Huijgen, W., Bermudez, L., Bakker, R.: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR Food & Biobased Research (2010)

  4. Tang, P.L., Hassan, O., Md-Jahim, J., Wan Mustapha, W.A., Maskat, M.Y.: Fibrous agricultural biomass as a potential source for bioconversion to vanillic acid. Int. J. Polym. Sci. 2014, 1–8 (2014)

    Article  Google Scholar 

  5. Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016)

    Article  Google Scholar 

  6. Jönsson, L.J., Alriksson, B., Nilvebrant, N.: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6, 1 (2013)

    Article  Google Scholar 

  7. Misson, M., Haron, R., Kamaroddin, M.F.A., Amin, N.A.S.: Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour. Technol. 100, 2867–2873 (2009)

    Article  Google Scholar 

  8. Converti, A., Aliakbarian, B., Domínguez, J.M., Perego, P., Vazquez, B.G.: Microbial production of biovanillin. Braz. J. Microbiol. 41, 519–530 (2010)

    Article  Google Scholar 

  9. Walton, N.J., Mayer, M.J., Narbad, A.: Vanillin. Phytochemistry 63, 505–515 (2003)

    Article  Google Scholar 

  10. Priefert, H., Rabenhorst, J., Steinbüchel, A.: Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56, 296–314 (2001)

    Article  Google Scholar 

  11. Ghosh, S., Sachan, A., Sen, S.K., Mitra, A.: Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J. Ind. Microbiol. Biotechnol. 34, 131–138 (2007)

    Article  Google Scholar 

  12. Zhao, L.Q., Sun, Z.H., Zheng, P., Zhu, L.L.: Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol. Lett. 27, 1505–1509 (2005)

    Article  Google Scholar 

  13. Yoon, S.H., Li, C., Lee, Y.M., Lee, S.H., Kim, S.H., Choi, M.S., Seo, W.T., Yang, J.K., Kim, J.Y., Kim, S.W.: Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess. Eng. 10, 378–384 (2005)

    Article  Google Scholar 

  14. Rosazza, J.P.N., Huang, Z., Dostal, L., Volm, T., Rousseau, B.: Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J. Ind. Microbiol. 15, 457–471 (1995)

    Article  Google Scholar 

  15. Torres, B.R., Aliakbarian, B., Torre, P., Perego, P., Domínguez, J.M., Zilli, M., Converti, A.: Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB1. Enzyme Microb. Technol. 44, 154–158 (2009)

    Article  Google Scholar 

  16. Mussatto, S.I., Dragone, G., Roberto, I.C.: Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind. Crop. Prod. 25, 231–237 (2007)

    Article  Google Scholar 

  17. Tilay, A., Bule, M., Kishenkumar, J., Annapure, U.: Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. J. Agric. Food Chem. 56, 7644–7648 (2008)

    Article  Google Scholar 

  18. Aanifah, F.J.M., Yee, P.L., Wasoh, H., Abd-Aziz, S.: Effect of different alkaline treatment on the release of ferulic acid from oil palm empty fruit bunch fibres. J. Oil Palm Res. 26, 321–331 (2014)

    Google Scholar 

  19. Lesage-Meessen, L., Haon, M., Delattre, M., Thibault, J.F., Ceccaldi, B.C., Asther, M.: An attempt to channel the transformation of vanillic acid into vanillin by controlling methoxyhydroquinone formation in Pycnoporus cinnabarinus with cellobiose. Appl. Microbiol. Biotechnol. 47, 393–397 (1997)

    Article  Google Scholar 

  20. Muchuweti, M., Zenda, G., Ndhlala, A.R., Kasiyamhuru, A.: Sugars, organic acid and phenolic compounds of Ziziphus mauritiana fruit. Eur. Food Res. Technol. 221, 570–574 (2005)

    Article  Google Scholar 

  21. Goering, H.K., Van Soest, P.J.: Forage fiber analysis (apparatus, reagents, procedures and some applications). U.S. Agricultural Research Service (1970)

  22. Denko, S.: Food analysis with Shodex columns. http://www.lifescience.ca/DATA/CATALOGUE/175~v~food-analysis-sugars-organic-acids-fatty-acids-amino-acids-and-vitamins.pdf (2014). Accessed 21 Feb 2014

  23. Ariffin, H., Hassan, M.A., Umikalsom, M.S.U., Abdullah, N., Shirai, Y.: Effect of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB). J. Trop. Agric. Food Sci. 36, 1–9 (2008)

    Google Scholar 

  24. Hamzah, F., Idris, A., Shuan, T.K.: Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 35, 1055–1059 (2011)

    Article  Google Scholar 

  25. Ibrahim, M.F., Razak, M.N.A., Phang, L.Y., Hassan, M.A., Abd-Aziz, S.: Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl. Biochem. Biotechnol. 170, 1320–1335 (2013)

    Article  Google Scholar 

  26. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Bioref. 2, 26–40 (2008)

    Article  Google Scholar 

  27. McIntosh, S., Vancov, T.: Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101, 6718–6727 (2010)

    Article  Google Scholar 

  28. Akhtar, J., Kuang, S.K., Saidina Amin, N.: Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renew. Energy 35, 1220–1227 (2010)

    Article  Google Scholar 

  29. Zhuang, J., Liu, Y., Wu, Z., Sun, Y., Lin, L.: Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. Bioresources 4, 674–686 (2009)

    Google Scholar 

  30. Ibrahim, M.N.M., Nadiah, M.Y.N., Norliyana, M.S., Sipaut, C.S., Shuib, S.: Separation of vanillin from oil palm empty fruit bunch lignin. Clean 36, 287–291 (2008)

    Google Scholar 

  31. Ibrahim, M.N.M., Nadiah, M.Y.N., Azian, H.: Comparison studies between soda lignin and soda-antraquinone lignin in terms of physico-chemical properties and structural features. J. Appl. Sci. 6, 292–296 (2006)

    Article  Google Scholar 

  32. Sun, R.C., Fang, J.M., Tomkinson, J., Bolton, J.: Physicochemical and structural characterization of alkali soluble lignins from oil palm trunk and empty fruit-bunch fibers. J. Agric. Food Chem. 47, 2930–2936 (1999)

    Article  Google Scholar 

  33. Shibata, M., Varman, M., Tono, Y., Miyafuji, H., Saka, S.: Characterization in chemical composition of the oil palm (Elaeis guineensis). J. Jpn. Inst. Energy 87, 383–388 (2008)

    Article  Google Scholar 

  34. Ando, S., Arai, I., Kiyoto, K., Hanai, S.: Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J. Ferment. Technol. 64, 567–570 (1986)

    Article  Google Scholar 

  35. Jonsson, L.J., Palmqvist, E., Nilvebrant, N., Hahn-Hägerdal, B.: Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Biochem. Biotechnol. 49, 691–697 (1998)

    Google Scholar 

  36. Sun, R., Tomkinson, J., Bolton, J.: Chemical analysis and structural characterization of oil palm lignins from black liquor of empty fruit bunch fiber pulping. Int. J. Polym. Anal. Chem. 5, 209–222 (1999)

    Article  Google Scholar 

  37. Aanifah, F.J.M.: Alkaline Hydrolysis of Oil Palm Empty Fruit Bunch Fibres for Ferulic Acid Release. PhD Thesis. Universiti Putra Malaysia (2013)

  38. Sun, R., Sun, X.F., Wang, S.Q., Zhu, W., Wang, X.Y.: Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind. Crop. Prod. 15, 179–188 (2002)

    Article  Google Scholar 

  39. Mussatto, S.I., Teixeira, J.A.: Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas, A. (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, pp. 897–907. FORMATEX (2010)

  40. Falconnier, B., Lapierre, C., Lesage-Meessen, L., Yonnet, G., Colonna-ceccaldi, B., Corrieu, G., Asther, M.: Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus 1-937: identification of metabolic pathways. J. Biotechnol. 37, 123–132 (1994)

    Article  Google Scholar 

  41. Salleh, N.H.M., Mohamed Daud, M.Z., Arbain, D., Ahmad, M.S.: Aromatic benzaldehyde from Oryzae sativa. In: 2011 International Conference on Food Engineering and Biotechnology, pp. 140–144. IACSIT Press, Singapore (2011)

  42. Lesage-Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Moukha, S., Record, E., Sigoillot, J.-C., Asther, M.: Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J. Sci. Food Agric. 79, 487–490 (1999)

    Article  Google Scholar 

  43. Lesage-Meessen, L., Lomascolo, A., Bonnin, E., Thibault, J.-F., Buleon, A., Roller, M., Asther, M., Record, E., Ceccaldi, B.C., Asther, M.: A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl. Biochem. Biotechnol. 102, 141–153 (2002)

    Article  Google Scholar 

  44. Zhao, Z., Moghadasian, M.H.: Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 109, 691–702 (2008)

    Article  Google Scholar 

  45. Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J., Guo, X.: Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour. Technol. 98, 1115–1119 (2007)

    Article  Google Scholar 

  46. Topakas, E., Kalogeris, E., Kekos, D., Macris, B.J., Christakopoulos, P.: Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT Food Sci. Technol. 36, 561–565 (2003)

    Article  Google Scholar 

  47. Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour. Technol. 74, 17–24 (2000)

    Article  Google Scholar 

  48. Zha, Y., Muilwijk, B., Coulier, L., Punt, P.J.: Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation processes. J. Bioprocess. Biotechnol. 2, 1–11 (2012)

    Article  Google Scholar 

  49. Lesage-Meessen, L., Delattre, M., Haon, M., Asther, M.: Methods for bioconversion of ferulic acid to vanillic acid or vanillin and for the bioconversion of vanillic acid to vanillin using filamentous fungi. UK Patent 5866, 380 (1999)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Universiti Putra Malaysia under the Fundamental Research Grant Scheme. Thank to Prof. Dr. Zahangir Alam from International Islamic University of Malaysia for the permission to use his local isolate, Phanerochaete chrysosporium for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraini Abd-Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkarnain, A., Bahrin, E.K., Ramli, N. et al. Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion. Waste Biomass Valor 9, 13–23 (2018). https://doi.org/10.1007/s12649-016-9745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9745-4

Keywords

Navigation