Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 1, pp 1–20 | Cite as

Dioxins from Biomass Combustion: An Overview

  • Mengmei Zhang
  • Alfons Buekens
  • Xiaodong LiEmail author
Review

Abstract

Biomass combustion originating both from human activities and behaviour and from natural causes, has caused considerable concern as a result of the numerous pollutants emitted into the atmosphere, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls, or in brief dioxins. The contribution of dioxins emissions from biomass combustion becomes more and more important, especially since evident guided emissions—principally from waste incineration and metallurgy—have been curtailed drastically. Different types of biofuels feature different chemical components, including cellulose, lignin, and proteins, and accompanying organic and inorganic compositions, thus showing different characteristics of dioxins generation. Combustion modes, either flaming or smouldering combustion, also show considerable influence on the amounts of dioxins emitted from the system and they may host distinct processes for forming dioxins. Lean in chlorine and catalytic copper, native biomass materials usually produce low emission factors. However, various contaminants are inevitably mixed into biofuels during combustion and significantly promote the dioxins generation. Emission factor data from a wide range of biomass burning sources are collated in the present review, suggesting that dioxins emissions are substantially influenced by the facilities used, their operating conditions and combustion processes, fuel composition, accidental addition of contaminants, etc. Their roles in biomass combustion and dioxins formation pathways, however, remain difficult to quantify, resulting in emission factor values stretching over several orders of magnitude and complicating the efforts to build a comprehensive global estimation of dioxins emissions from biomass burning.

Keywords

Biomass combustion Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) Dioxin-like polychlorinated biphenyls (dl-PCBs) Incineration Products of incomplete combustion Open burning 

Abbreviations

2,4-D

2,4-Dichlorophenoxyacetic acid

ACQ

Ammoniacal copper quaternary

APCD

Air pollution control devices

ar

As-received

BFRs

Brominated flame retardants

BTEX-aromatics

Benzene, toluene, ethylbenzene, xylenes

CBA

Copper boron azole

CBz

Chlorobenzenes

CCA

Chromated copper arsenate

CH4

Methane

CO

Carbon monoxide

CO2

Carbon dioxide

CP

Chlorophenols

daf

Dry-ash-free

dl-PCBs

Dioxin-like polychlorinated biphenyls

DSC

Differential scanning calorimetry

EFs

Emission factors

EPA

U.S. Environmental Protection Agency

FC

Fixed carbon

HCBz

Hexachlorobenzene

I-TEQ

International toxic equivalence quantity

MSWIs

Municipal solid waste incinerators

NMOC

Non-methane organic compounds

O3

Photochemical ozone

OBTF

Open Burning Test Facility

P

Poly-

PAHs

Polycyclic aromatic hydrocarbons

PCBs

Polychlorinated biphenyls

PCDD/Fs

Polychlorinated dibenzo-p-dioxins and dibenzofurans

PCDDs

Polychlorinated dibenzo-p-dioxins

PCDFs

Polychlorinated dibenzofurans

PE

Polyethylene

PICs

Products of incomplete combustion

PM

Particulate matter

PVC

Polyvinylchloride

REP

Relative effect potency

SOA

Secondary organic aerosol

TCDD

Tetrachlorinated dibenzo-p-dioxin

TEFs

Toxic equivalency factors

TEQ

Toxic equivalency

UNEP

United Nations Environment Programme

VM

Volatile matter

WHO-TEQ

World Health Organization toxic equivalence quantity

Notes

Acknowledgments

The Program of Introducing Talents of Discipline to University (B08026) and the PaoYu-Kong International Fund financed this study. The text was presented as a Keynote Paper at the WasteEng2016 Conference, May 23–26, held at Albi (France). We thank Prof. Ange Nzihou and his collaborators for the perfect organisation.

References

  1. 1.
    Andreae, M.O.: Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate. In: Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, pp. 3–21 (1991)Google Scholar
  2. 2.
    Levine, J.S.: Biomass Burning and Global Change: Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa. MIT Press, Cambridge (1996)Google Scholar
  3. 3.
    Streets, D.G., Yarber, K.F., Woo, J.H., Carmichael, G.R.: Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 17, 1099 (2003)CrossRefGoogle Scholar
  4. 4.
    Williams, A., Jones, J.M., Ma, L., Pourkashanian, M.: Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. 38, 113–137 (2012)CrossRefGoogle Scholar
  5. 5.
    McMeeking, G.R., Kreidenweis, S.M., Lunden, M., Carrillo, J., Carrico, C.M., Lee, T., Herckes, P., Engling, G., Day, D.E., Hand, J.: Smoke-impacted regional haze in California during the summer of 2002. Agric. Forest Meteorol. 137, 25–42 (2006)CrossRefGoogle Scholar
  6. 6.
    Li, F.Y., Wang, J.F.: Estimation on emitted carbon from open burning and biochar transformation of crop straw. J. Agric. Eng. 29, 1–7 (2013)Google Scholar
  7. 7.
    Park, R.J., Jacob, D.J., Logan, J.A.: Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States. Atmos. Environ. 41, 7389–7400 (2007)CrossRefGoogle Scholar
  8. 8.
    Galanter, M., Levy, H., Carmichael, G.R.: Impacts of biomass burning on tropospheric CO, NOx, and O3. J. Geophys. Res. Atmos. 105, 6633–6653 (2000)CrossRefGoogle Scholar
  9. 9.
    Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., Wennberg, P.O.: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011)CrossRefGoogle Scholar
  10. 10.
    Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, D14203 (2004)CrossRefGoogle Scholar
  11. 11.
    Menon, S., Hansen, J., Nazarenko, L., Luo, Y.: Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002)CrossRefGoogle Scholar
  12. 12.
    Hannigan, M.P., Cass, G.R., Penman, B.W., Crespi, C.L., Lafleur, A.L., Busby, W.F., Thilly, W.G., Simoneit, B.R.: Bioassay-directed chemical analysis of Los Angeles airborne particulate matter using a human cell mutagenicity assay. Environ. Sci. Technol. 32, 3502–3514 (1998)CrossRefGoogle Scholar
  13. 13.
    Stockwell, C.E., Yokelson, R., Kreidenweis, S.M., Robinson, A.L., DeMott, P.J., Sullivan, R.C., Reardon, J., Ryan, K.C., Griffith, D.W., Stevens, L.: Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos. Chem. Phys. 14, 9727–9754 (2014)CrossRefGoogle Scholar
  14. 14.
    Simoneit, B.R.T.: Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, 129–162 (2002)CrossRefGoogle Scholar
  15. 15.
    Yokelson, R.J., Burling, I.R., Gilman, J.B., Warneke, C., Stockwell, C.E., Gouw, J.D., Akagi, S.K., Urbanski, S.P., Veres, P., Roberts, J.M.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos. Chem. Phys. 13, 89–116 (2013)CrossRefGoogle Scholar
  16. 16.
    Reid, J.S., Hobbs, P.V., Ferek, R.J., Martins, J.V., Blake, D.R., Dunlap, M.R., Liousse, C.: Physical, chemical, and radiative characteristics of the smoke dominated regional hazes over Brazil. J. Geophys. Res. 103, 32059–32080 (1998)CrossRefGoogle Scholar
  17. 17.
    Stockwell, C.E., Veres, P.R., Williams, J., Yokelson, R.J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmos. Chem. Phys. 15, 845–865 (2015)CrossRefGoogle Scholar
  18. 18.
    Yokelson, R.J., Christian, T.J., Karl, T.G., Guenther, A.: The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmos. Chem. Phys. 8, 3509–3527 (2008)CrossRefGoogle Scholar
  19. 19.
    Jones, K.C.: Dioxins and Furans in the Environment. Euro Chlor Science Dossier, Brussels (2003)Google Scholar
  20. 20.
    Schecter, A., Birnbaum, L., Ryan, J.J., Constable, J.D.: Dioxins: an overview. Environ. Res. 101, 419–428 (2006)CrossRefGoogle Scholar
  21. 21.
    Schecter, A.: Dioxins and Health. Springer, Berlin (2012)CrossRefGoogle Scholar
  22. 22.
    Hites, R.A.: Dioxins: an overview and history. Environ. Sci. Technol. 45, 16–20 (2010)CrossRefGoogle Scholar
  23. 23.
    Quaß, U., Fermann, M.W., Bröker, G.: Steps towards a European dioxin emission inventory. Chemosphere 40, 1125–1129 (2000)CrossRefGoogle Scholar
  24. 24.
    Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M.: Formation of dioxins and furans during combustion of treated wood. Prog. Energy Combust. 33, 384–408 (2007)CrossRefGoogle Scholar
  25. 25.
    Fiedler, H., Cao, Z., Huang, J., Wang, B., Deng, S., Yu, G.: PCDD/PCDF inventories 1990 vs. 2012. Organohalog. Compd. 74, 1521–1524 (2012)Google Scholar
  26. 26.
    Lavric, E.D., Konnov, A.A., Ruyck, J.D.: Dioxin levels in wood combustion—a review. Biomass Bioenergy 26, 115–145 (2004)CrossRefGoogle Scholar
  27. 27.
    Addink, R., Cnubben, P.A.J.P., Olie, K.: Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans on fly ash from precursors and carbon model compounds. Carbon 33, 1463–1471 (1995)CrossRefGoogle Scholar
  28. 28.
    Huang, H., Buekens, A.: On the mechanisms of dioxin formation in combustion processes. Chemosphere 31, 4099–4117 (1995)CrossRefGoogle Scholar
  29. 29.
    Addink, R., Olie, K.: Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ. Sci. Technol. 29, 1425–1435 (1995)CrossRefGoogle Scholar
  30. 30.
    Stanmore, B.R.: The formation of dioxins in combustion systems. Combust. Flame 136, 398–427 (2004)CrossRefGoogle Scholar
  31. 31.
    Düwel, U., Nottrodt, A., Ballschmiter, K.: Simultaneous sampling of PCDD/PCDF inside the combustion chamber and on four boiler levels of a waste incineration plant. Chemosphere 20, 1839–1846 (1990)CrossRefGoogle Scholar
  32. 32.
    Samaras, P., Skodras, G., Sakellaropoulos, G.P., Blumenstock, M., Schramm, K.W., Kettrup, A.: PCDD/F emissions during lignite-biomass wastewood co-combustion in a moving grate industrial combustor. Organohalog. Compd. 41, 259–264 (1999)Google Scholar
  33. 33.
    Schleicher, O., Jensen, A., Blinksbjerg, P., Thomsen, E., Schilling, B.: Dioxin emissions from biomass fired energy plants and other sources in Denmark. Organohalog. Compd. 56, 147–150 (2002)Google Scholar
  34. 34.
    Gullett, B.K., Touati, A., Hays, M.D.: PCDD/F, PCB, HxCBz, PAH, and PM emission factors for fireplace and woodstove combustion in the San Francisco Bay Region. Environ. Sci. Technol. 37, 1758–1765 (2003)CrossRefGoogle Scholar
  35. 35.
    Hübner, C., Boos, R., Prey, T.: In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels. Chemosphere 58, 367–372 (2005)CrossRefGoogle Scholar
  36. 36.
    Shih, S., Lee, W., Lin, L., Huang, J., Su, J., Chang-Chien, G.: Significance of biomass open burning on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air. J. Hazard. Mater. 153, 276–284 (2008)CrossRefGoogle Scholar
  37. 37.
    Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., Hillamo, R.: Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments. Atmos. Environ. 41, 3577–3589 (2007)CrossRefGoogle Scholar
  38. 38.
    Jaffe, D., Hafner, W., Chand, D., Westerling, A., Spracklen, D.: Interannual variations in PM2. 5 due to wildfires in the Western United States. Environ. Sci. Technol. 42, 2812–2818 (2008)CrossRefGoogle Scholar
  39. 39.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)CrossRefGoogle Scholar
  40. 40.
    Nussbaumer, T.: Dioxin- und PAK-Emissionen der privaten Abfallverbrennung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern (2004). (in German) Google Scholar
  41. 41.
    Hedman, B., Näslund, M., Nilsson, C., Marklund, S.: Emissions of polychlorinated dibenzodioxins and dibenzofurans and polychlorinated biphenyls from uncontrolled burning of garden and domestic waste (backyard burning). Environ. Sci. Technol. 39, 8790–8796 (2005)CrossRefGoogle Scholar
  42. 42.
    Zhang, T., Huang, J., Deng, S., Yu, G.: Influence of pesticides contamination on the emission of PCDD/PCDF to the land from open burning of corn straws. Environ. Pollut. 159, 1744–1748 (2011)CrossRefGoogle Scholar
  43. 43.
    Bhargava, A., Dlugogorski, B.Z., Kennedy, E.M.: Emission of polyaromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and furans from fires of wood chips. Fire Saf. J. 37, 659–672 (2002)CrossRefGoogle Scholar
  44. 44.
    Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M.: Assessing influence of experimental parameters on formation of PCDD/F from ash derived from fires of CCA-treated wood. Environ. Sci. Technol. 37, 4148–4156 (2003)CrossRefGoogle Scholar
  45. 45.
    Salthammer, T., Klipp, H., Peek, R., Marutzky, R.: Formation of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) during the combustion of impregnated wood. Chemosphere 30, 2051–2060 (1995)CrossRefGoogle Scholar
  46. 46.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2012)CrossRefGoogle Scholar
  47. 47.
    Shafizadeh, F.: Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrol. 3, 283–305 (1982)CrossRefGoogle Scholar
  48. 48.
    Kataki, R., Konwer, D.: Fuelwood characteristics of some indigenous woody species of north-east India. Biomass Bioenergy 20, 17–23 (2001)CrossRefGoogle Scholar
  49. 49.
    Yang, H., Yan, R., Chen, H., Lee, D., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)CrossRefGoogle Scholar
  50. 50.
    Gibson, L.J.: The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 76, 2749–2766 (2013)Google Scholar
  51. 51.
    Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W.: Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58, 9043–9053 (2010)CrossRefGoogle Scholar
  52. 52.
    King, H., Solomon, P.R., Avni, E., Coughlin, R.W.: Modeling tar composition in lignin pyrolysis. In: Symposium on Mathematical Modeling of Biomass Pyrolysis Phenomena. Washington (1983)Google Scholar
  53. 53.
    Meyer, C.P., Beer, T., Muller, J.F.: Dioxins emissions from bushfires in Australia—Technical Report No. 1. Australian Government, Department of the Environment, Water, Heritage and the Arts (2004)Google Scholar
  54. 54.
    Gullett, B.K., Touati, A., Huwe, J., Hakk, H.: PCDD and PCDF emissions from simulated sugarcane field burning. Environ. Sci. Technol. 40, 6228–6234 (2006)CrossRefGoogle Scholar
  55. 55.
    Van Oostdam, J.C., Ward, J.E.H.: Dioxins and furans in the British Columbia environment. BC Environment, Environmental Protection Department (1995)Google Scholar
  56. 56.
    Sheng, C., Azevedo, J.: Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components. Proc. Combust. Inst. 29, 407–414 (2002)CrossRefGoogle Scholar
  57. 57.
    Saddawi, A., Jones, J.M., Williams, A., Wojtowicz, M.A.: Kinetics of the thermal decomposition of biomass. Energy Fuel 24, 1274–1282 (2009)CrossRefGoogle Scholar
  58. 58.
    Kawamoto, H., Murayama, M., Saka, S.: Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation. J. Wood Sci. 49, 469–473 (2003)CrossRefGoogle Scholar
  59. 59.
    Amen-Chen, C., Pakdel, H., Roy, C.: Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour. Technol. 79, 277–299 (2001)CrossRefGoogle Scholar
  60. 60.
    Lasagni, M., Collina, E., Piccinelli, E., Anzano, M.N., Piazzalunga, A., Pitea, D.: Kinetic modeling of the formation and destruction of polychlorinated dibenzo-p-dioxin and dibenzofuran from fly ash native carbon at 300 °C. Environ. Sci. Technol. 47, 4349–4356 (2013)CrossRefGoogle Scholar
  61. 61.
    Ohlemiller, T.J.: Smoldering Combustion. Center for Fire Research, Berkeley (1986)CrossRefGoogle Scholar
  62. 62.
    Ogle, R.A., Schumacher, J.L.: Fire patterns on upholstered furniture: smoldering versus flaming combustion. Fire Technol. 34, 247–265 (1998)CrossRefGoogle Scholar
  63. 63.
    Rein, G.: Smouldering combustion phenomena in science and technology. Int. Rev. Chem. Eng. 1, 3–18 (2009)Google Scholar
  64. 64.
    Olie, K., Vermeulen, P.L., Hutzinger, O.: Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands. Chemosphere 6, 455–459 (1977)CrossRefGoogle Scholar
  65. 65.
    Dickson, L.C., Lenoir, D., Hutzinger, O.: Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions. Environ. Sci. Technol. 26, 1822–1828 (1992)CrossRefGoogle Scholar
  66. 66.
    Altwicker, E.R.: Relative rates of formation of polychlorinated dioxins and furans from precursor and de novo reactions. Chemosphere 33, 1897–1904 (1996)CrossRefGoogle Scholar
  67. 67.
    Tuppurainen, K., Asikainen, A., Ruokojärvi, P., Ruuskanen, J.: Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Accounts Chem. Res. 36, 652–658 (2003)CrossRefGoogle Scholar
  68. 68.
    Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M.: Conversion of wood pyrolysates to PCDD/F. Proc. Combust. Inst. 32, 665–671 (2009)CrossRefGoogle Scholar
  69. 69.
    Stieglitz, L., Eichberger, M., Schleihauf, J., Beck, J., Zwick, G., Will, R.: The oxidative degradation of carbon and its role in the de-novo-synthesis of organohalogen compounds in fly ash. Chemosphere 27, 343–350 (1993)CrossRefGoogle Scholar
  70. 70.
    Stieglitz, L.: Selected topics on the de novo synthesis of PCDD/PCDF on fly ash. Environ. Eng. Sci. 15, 5–18 (1998)CrossRefGoogle Scholar
  71. 71.
    Ooi, T.C., Lu, L.: Formation and mitigation of PCDD/Fs in iron ore sintering. Chemosphere 85, 291–299 (2011)CrossRefGoogle Scholar
  72. 72.
    McKay, G.: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem. Eng. J. 86, 343–368 (2002)CrossRefGoogle Scholar
  73. 73.
    Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M., Mackie, J.C.: Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. 35, 245–274 (2009)CrossRefGoogle Scholar
  74. 74.
    Sakurai, T., Kobayashi, T., Watanabe, T., Kondo, T.: Formation of PCDD/Fs from chlorophenols (CPs) on fly ash produced by municipal solid waste incinerators. Organohalog. Compd. 27, 183–186 (1996)Google Scholar
  75. 75.
    Liu, G., Jiang, X., Wang, M., Dong, S., Zheng, M.: Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere 133, 68–74 (2015)CrossRefGoogle Scholar
  76. 76.
    Liu, G., Zheng, M., Jiang, G., Cai, Z., Wu, Y.: Dioxin analysis in China. TrAC Trends Anal. Chem. 46, 178–188 (2013)CrossRefGoogle Scholar
  77. 77.
    Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M.: PCDD/F formation in flaming combustion, smoldering, and oxidative pyrolysis of ‘eco-friendly’ treated wood. Proc. Combust. Inst. 30, 1237–1243 (2005)CrossRefGoogle Scholar
  78. 78.
    Chagger, H.K., Kendall, A., McDonald, A., Pourkashanian, M., Williams, A.: Formation of dioxins and other semi-volatile organic compounds in biomass combustion. Appl. Energy 60, 101–114 (1998)CrossRefGoogle Scholar
  79. 79.
    Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., Weber, R.: Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol. Chemosphere 39, 2749–2756 (1999)CrossRefGoogle Scholar
  80. 80.
    Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M.: De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environ. Sci. Technol. 33, 1038–1043 (1999)CrossRefGoogle Scholar
  81. 81.
    Wilhelm, J., Stieglitz, L., Dinjus, E., Will, R.: Mechanistic studies on the role of PAHs and related compounds in PCDD/F formation on model fly ashes. Chemosphere 42, 797–802 (2001)CrossRefGoogle Scholar
  82. 82.
    Tame, N., Dlugogorski, B.Z., Kennedy, E.M.: PCDD/F formation from heterogeneous oxidation of wood pyrolysates. Fire Saf. Sci. 9, 1189–1200 (2008)CrossRefGoogle Scholar
  83. 83.
    Wikström, E., Ryan, S., Touati, A., Gullett, B.K.: Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 37, 1962–1970 (2003)CrossRefGoogle Scholar
  84. 84.
    Zhang, M., Buekens, A.: De novo synthesis in iron ore sintering. Int. J. Environ. Pollut. (2016, in press)Google Scholar
  85. 85.
    Chen, K., Mackie, J.C., Kennedy, E.M., Dlugogorski, B.Z.: Determination of toxic products released in combustion of pesticides. Prog. Energy Combust. 38, 400–418 (2012)CrossRefGoogle Scholar
  86. 86.
    Muñoz, M., Gullett, B.K., Touati, A., Font, R.: Effect of 2,4-dichlorophenoxyacetic acid (2,4-D) on PCDD/F emissions from open burning of biomass. Environ. Sci. Technol. 46, 9308–9314 (2012)CrossRefGoogle Scholar
  87. 87.
    Gullett, B.K., Tabor, D., Touati, A., Kasai, J., Fitz, N.: Emissions from open burning of used agricultural pesticide containers. J. Hazard. Mater. 221–222, 236–241 (2012)CrossRefGoogle Scholar
  88. 88.
    Vikelsøe, J., Johansen, E.: Estimation of dioxin emission from fires in chemicals. Chemosphere 40, 165–175 (2000)CrossRefGoogle Scholar
  89. 89.
    Holt, E., Weber, R., Stevenson, G., Gaus, C.: Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) impurities in pesticides: a neglected source of contemporary relevance. Environ. Sci. Technol. 44, 5409–5415 (2010)CrossRefGoogle Scholar
  90. 90.
    Masunaga, S., Takasuga, T., Nakanishi, J.: Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations. Chemosphere 44, 873–885 (2001)CrossRefGoogle Scholar
  91. 91.
    Pieper, A., Wichmann, H., Bahadir, M., Strecker, M., Marutzky, R.: Pollutants and their reduction in small-scale wood incinerators. Waste Technol. 11, 854–862 (2001)Google Scholar
  92. 92.
    Wasson, S.J., Linak, W.P., Gullett, B.K., King, C.J., Touati, A., Huggins, F.E., Chen, Y., Shah, N., Huffman, G.P.: Emissions of chromium, copper, arsenic, and PCDDs/Fs from open burning of CCA-treated wood. Environ. Sci. Technol. 39, 8865–8876 (2005)CrossRefGoogle Scholar
  93. 93.
    Zhang, M., Buekens, A., Jiang, X., Li, X.: Dioxins and PVC in combustion and fires: a review. Waste Manag. Res. 33, 630–643 (2015)CrossRefGoogle Scholar
  94. 94.
    World Health Organization: Flame retardants: a general introduction. In: Environmental Health Criteria, vol. 192. International Programme on Chemical Safety (WHO/IPCS), Geneva (1997)Google Scholar
  95. 95.
    Zhang, M., Buekens, A., Li, X.: Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J. Hazard. Mater. 304, 26–39 (2016)CrossRefGoogle Scholar
  96. 96.
    Wall, R.J., Fernandes, A., Rose, M., Bell, D.R., Mellor, I.R.: Characterisation of chlorinated, brominated and mixed halogenated dioxins, furans and biphenyls as potent and as partial agonists of the aryl hydrocarbon receptor. Environ. Int. 76, 49–56 (2015)CrossRefGoogle Scholar
  97. 97.
    Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R.E.: The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93, 223–241 (2006)CrossRefGoogle Scholar
  98. 98.
    NATOCCMS: Scientific Basis for the Development of International Toxicity Equivalency Factor (I-TEQ) Method of Risk Assessment for the Complex Mixtures of Dioxins and Related Compounds. North Atlantic Treaty Organization/Committee on Challenges of Modern Society, Washington (1988)Google Scholar
  99. 99.
    Langmann, B., Duncan, B., Textor, C., Trentmann, J., van der Werf, G.R.: Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43, 107–116 (2009)CrossRefGoogle Scholar
  100. 100.
    Black, R.R., Meyer, C.P.M., Touati, A., Gullett, B.K., Fiedler, H., Mueller, J.F.: Emission factors for PCDD/PCDF and dl-PCB from open burning of biomass. Environ. Int. 38, 62–66 (2012)CrossRefGoogle Scholar
  101. 101.
    Skodras, G., Grammelis, P., Samaras, P., Vourliotis, P., Kakaras, E., Sakellaropoulos, G.P.: Emissions monitoring during coal waste wood co-combustion in an industrial steam boiler. Fuel 81, 547–554 (2002)CrossRefGoogle Scholar
  102. 102.
    Launhardt, T., Thoma, H.: Investigation on organic pollutants from a domestic heating system using various solid biofuels. Chemosphere 40, 1149–1157 (2000)CrossRefGoogle Scholar
  103. 103.
    Narang, A.S., Swami, K., Narang, R.S., Eadon, G.A.: Pyrolysis and combustion of liquids and solids containing pentachlorophenol. Chemosphere 22, 1029–1043 (1991)CrossRefGoogle Scholar
  104. 104.
    Muto, H., Sugawara, T.: Polychlorinated dibenzo-p-dioxins and dibenzofurans in plywood combustion gas. Chemosphere 45, 145–150 (2001)CrossRefGoogle Scholar
  105. 105.
    CARB California Air Resources Board: Evaluation on a woodwaste fired incinerator at Koppers Company, Oroville, California, Test Report No. C-88-065. Engineering Evaluation Branch Monitoring and Laboratory Division (1990)Google Scholar
  106. 106.
    Schatowitz, B., Brandt, G., Gafner, F., Schlumpf, E., Bühler, R., Hasler, P., Nussbaumer, T.: Dioxin emissions from wood combustion. Chemosphere 29, 2005–2013 (1994)CrossRefGoogle Scholar
  107. 107.
    Kolenda, J., Gass, H., Wilken, M., Jager, J., Zeschmar-Lahl, B.: Determination and reduction of PCDD/F emissions from wood burning facilities. Chemosphere 29, 1927–1938 (1994)CrossRefGoogle Scholar
  108. 108.
    U. S. Environmental Protection Agency: Update to An Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the United States for the Years 1987, 1995, and 2000. National Center for Environmental Assessment, Washington (2013)Google Scholar
  109. 109.
    ERMD Emission Research And Measurement Division: Characterization of organic compounds from selected residential wood stoves and fuels. Report ERMD 2000-01, Canada (2000)Google Scholar
  110. 110.
    Wevers, M., De Fre, R., Vanermen, G.: PCDD/F and PAH emissions from domestic heating appliances with solid fuel. Organohalog. Compd. 63, 21–24 (2003)Google Scholar
  111. 111.
    U. S. Environmental Protection Agency: Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds, Part I, Vol. 2: Sources of Dioxin-Like Compounds in the United States. National Center for Environmental Assessment, Washington (2001)Google Scholar
  112. 112.
    Kim, E., Oh, J., Chang, Y.: Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 311, 177–189 (2003)CrossRefGoogle Scholar
  113. 113.
    U. S. Environmental Protection Agency: An Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the United States for the Years 1987, 1995, and 2000. National Center for Environmental Assessment, Washington (2006)Google Scholar
  114. 114.
    Collet, S., Fiani, E.: PAH, PCB and PCDD/F emissions from simulated forest and landfill fires. Organohalog. Compd. 68, 856–859 (2006)Google Scholar
  115. 115.
    Gullett, B., Touati, A.: PCDD/F emissions from forest fire simulations. Atmos. Environ. 37, 803–813 (2003)CrossRefGoogle Scholar
  116. 116.
    Lemieux, P.M.: Evaluation of Emissions from the open burning of household waste in barrels. In: Technical Report, EPA/600/R-97-134a, vol. 1. US Environmental Protection Agency, National Risk Management Research Laboratory (1997)Google Scholar
  117. 117.
    Gullett, B., Touati, A., Oudejans, L.: PCDD/F and aromatic emissions from simulated forest and grassland fires. Atmos. Environ. 42, 7997–8006 (2008)CrossRefGoogle Scholar
  118. 118.
    Black, R.R., Meyer, C.P., Touati, A., Gullett, B.K., Fiedler, H., Mueller, J.F.: Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility. Chemosphere 83, 1331–1338 (2011)CrossRefGoogle Scholar
  119. 119.
    Grandesso, E., Gullett, B., Touati, A., Tabor, D.: Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass. Environ. Sci. Technol. 45, 3887–3894 (2011)CrossRefGoogle Scholar
  120. 120.
    Environment Australia. Sources of Dioxins and Furans in Australia: Air Emissions. Environment Australia, Canberra (ISBN 06254847), 2002Google Scholar
  121. 121.
    UNEP: Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional POPs Under Article 5 of the Stockholm Convention. Geneva, Switzerland (2012)Google Scholar
  122. 122.
    Gadde, B., Bonnet, S., Menke, C., Garivait, S.: Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 157, 1554–1558 (2009)CrossRefGoogle Scholar
  123. 123.
    Zhang, Q., Huang, J., Yu, G.: Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions from open burning of crop residues in China between 1997 and 2004. Environ. Pollut. 151, 39–46 (2008)CrossRefGoogle Scholar
  124. 124.
    Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J., Gullett, B.K.: Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos. Environ. 39, 6747–6764 (2005)CrossRefGoogle Scholar
  125. 125.
    Gullett, B., Touati, A.: PCDD/F emissions from burning wheat and rice field residue. Atmos. Environ. 37, 4893–4899 (2003)CrossRefGoogle Scholar
  126. 126.
    Seike, N., Kashiwagi, N., Otani, T.: PCDD/F contamination over time in Japanese Paddy Soils. Environ. Sci. Technol. 41, 2210–2215 (2007)CrossRefGoogle Scholar
  127. 127.
    Sasagawa, K., Sakai, M., Adachi, W., Takahashi, Y.: Photodecomposition of Dioxins in ash and paddy field soil. Organohalog. Compd. 69, 2463–2466 (2007)Google Scholar
  128. 128.
    Ikeguchi, T., Tanaka, M.: Experimental study on dioxins emission from open burning simulation of selected wastes. Organohalog. Compd. 41, 507–510 (1999)Google Scholar
  129. 129.
    Wevers, M., De Fré, R., Desmedt, M.: Effect of backyard burning on dioxin deposition and air concentrations. Chemosphere 54, 1351–1356 (2004)CrossRefGoogle Scholar
  130. 130.
    Andreae, M.O., Merlet, P.: Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15, 955–966 (2001)CrossRefGoogle Scholar
  131. 131.
    Fernandes, S.D., Trautmann, N.M., Streets, D.G., Roden, C.A., Bond, T.C.: Global biofuel use, 1850–2000. Glob. Biogeochem. Cycles 21, GB2019 (2007)CrossRefGoogle Scholar
  132. 132.
    Ludwig, J., Marufu, L.T., Huber, B., Andreae, M.O., Helas, G.: Domestic combustion of biomass fuels in developing countries: a major source of atmospheric pollutants. J. Atmos. Chem. 44, 23–37 (2003)CrossRefGoogle Scholar
  133. 133.
    Yevich, R., Logan, J.A.: An assessment of biofuel use and burning of agricultural waste in the developing world. Glob. Biogeochem. Cycles 17, 1095 (2003)CrossRefGoogle Scholar
  134. 134.
    Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.V., Jaya, A., Limin, S.: The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002)CrossRefGoogle Scholar
  135. 135.
    Christian, T.J., Yokelson, R.J., Cárdenas, B., Molina, L.T., Engling, G., Hsu, S.: Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmos. Chem. Phys. 10, 565–584 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina

Personalised recommendations