Skip to main content

Advertisement

Log in

Biosynthesis of Gold Nanoparticles and Gold/Prodigiosin Nanoparticles with Serratia marcescens Bacteria

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper presents the biosynthesis of gold nanoparticles and gold/prodigiosin nanoparticles from the bacterium, Serratia marcescens. The intra- and extra-cellular synthesis of gold nanoparticles is shown to occur over a range of pH and incubation times in cell-free extracts and biomass of Serratia marcescens that were reacted with 2.5 mM tetrachloroauric acid (HAuCl4). The formation of gold nanoparticles was recognized initially via color changes from yellow auro-chloride to shades of red or purple in gold nanoparticle solutions. UV–visible spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and dynamic light scattering were also used to characterize gold nanoparticles produced within a range of pH conditions. The results show clearly that the production of gold nanoparticles from cell-free extracts require shorter times than the production of gold nanoparticles from the biomass. The implications of the results are also discussed for the processing of gold nanoparticles and gold prodigiosin nanoparticles for localized cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Neeleshwar, S., Chen, C.L., Tsai, C.B., Chen, Y.Y., Chen, C.C., Shyu, S.G., Seehra, M.S.: Size-dependent properties of CdSe quantum dots. Phys. Rev. B 71(201307), 1–4 (2005)

    Google Scholar 

  2. Deplanche, K., Macaskie, L.E.: Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol. Bioeng. 99, 1055–1064 (2008)

    Article  Google Scholar 

  3. Salata, O.V.: Application of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3–9 (2004)

    Article  Google Scholar 

  4. Tolles, W.M.: Nanoscience and nanotechnology in Europe. Nanotechnology 7(2), 59 (1996)

    Article  Google Scholar 

  5. Selvakannan, P.R., Mandal, S., Phadtare, S., Gole, A., Pasricha, R., Adyanthaya, S.D., Sastry, M.: Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci. 269, 97–102 (2004)

    Article  Google Scholar 

  6. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)

    Article  Google Scholar 

  7. Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H., Yobiko, Y.: Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold (III) reduction and size of 338 formed gold particles. Langmuir 17, 7717–7720 (2001)

    Article  Google Scholar 

  8. Stephen, R., Macnaughton, S.J.: Developments in terrestrial bacterial remediation of metals. Curr. Opin. Biotechnol. 10, 230–233 (1999)

    Article  Google Scholar 

  9. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., Sastry, M.: Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 15, 15–519 (2001)

    Google Scholar 

  10. Singh, A., Jain, D., Upadhyay, M.K., Khandelwal, N., Verma, H.N.: Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct. 5(2), 483–489 (2010)

    Google Scholar 

  11. Arangasamy, L., Munusamy, V.: Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr. J. Biotechnol. 7(17), 3162–3165 (2008)

    Google Scholar 

  12. Melanie, H., Ulrich, S.: On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philos. Trans. R. Soc. Lond. A 368, 1405–1453 (2010)

    Article  Google Scholar 

  13. Rochelle, A., Resham, B., Mukherjee, P.: Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 7(6), 753–763 (2010)

    Article  Google Scholar 

  14. Valden, M., Lai, X., Goodman, D.W.: Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281(53), 1647–1650 (1998)

    Article  Google Scholar 

  15. Haruta, M., Date, M.: Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222, 427–437 (2001)

    Article  Google Scholar 

  16. Kung, H.H., Kung, M.C., Costello, C.K.: Supported Au catalysts for low temperature CO oxidation. J. Catal. 216, 425–432 (2003)

    Article  Google Scholar 

  17. Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., Sastry, M.: Extracellular biosynthesis of monodisperse fold nanoparticles by a novel extremophilic actinomycete Thermonospora sp. Langmuir 19, 3550–3553 (2003)

    Article  Google Scholar 

  18. Zhang, X., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82, 489–494 (2011)

    Article  Google Scholar 

  19. Li, X., Xu, X.H., Chen, Z.S., Chen, G.: Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. (2011). doi:10.1155/2011/270974

    Google Scholar 

  20. Gole, A., Dash, C., Sainkar, S.R., Mandale, A.B., Rao, M., Sastry, M.: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Anal. Chem. 72, 1401–1403 (2000)

    Article  Google Scholar 

  21. Husseiny, M.I., El-Aziz, M.A., Badr, Y., Mahmoud, M.A.: Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta Part A 67(3–4), 1003–1006 (2007)

    Article  Google Scholar 

  22. He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., Gu, N.: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater. Lett. 61(18), 3984–3987 (2007)

    Article  Google Scholar 

  23. Konishi, Y., Tsukiyama, T., Tachimi, T., Saitoh, N., Nomura, T., Nagamine, S.: Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim. Acta 53(1), 186–192 (2007)

    Article  Google Scholar 

  24. Mohanpuria, P., Rana, N.K., Yadav, S.: Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10(3), 507–517 (2008)

    Article  Google Scholar 

  25. Beveridge, T.J., Murray, G.E.: Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141, 876–887 (1980)

    Google Scholar 

  26. Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., Sastry, M.: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3, 461–463 (2002)

    Article  Google Scholar 

  27. Ahmad, A., Senapati, S., Khan, M.I., Ramani, R., Srinivas, V., Sastry, M.: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14, 824–838 (2003)

    Article  Google Scholar 

  28. Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z., Au, L., Zhang, H., Kimmey, M.B., Li, X., Xia, Y.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3), 473–477 (2005)

    Article  Google Scholar 

  29. Loo, C., Lowery, A., Halas, N., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005)

    Article  Google Scholar 

  30. Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004)

    Article  Google Scholar 

  31. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003)

    Article  Google Scholar 

  32. Mukherjee, P., Bhattacharya, R., Wang, P., Wang, L., Basu, S., Nagy, J.A., Atala, A., Mukhopadhyay, D., Soker, S.: Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. 11(9), 3530–3534 (2005)

    Article  Google Scholar 

  33. Hainfeld, J.F., Slatkin, D.N., Smilowitz, H.M.: The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004)

    Article  Google Scholar 

  34. Reddy, J.A., Allagadda, V.M., Leamon, C.P.: Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. 6(2), 131–150 (2005)

    Article  Google Scholar 

  35. Cascante, M., Centelles, J.J., Veech, R.L., Lee, W.N., Boros, L.G.: Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr. Cancer 36(2), 150–154 (2000)

    Article  Google Scholar 

  36. Park, J.W., Benz, C.C., Martin, F.J.: Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31(6 Suppl. 13), 196–205 (2004)

    Article  Google Scholar 

  37. El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5(5), 829–834 (2005)

    Article  Google Scholar 

  38. Alibart, F., Pleutin, S., Guerin, D., Novembre, C., Lenfant, S., Lmimouni, K., Gamrat, C., Vuillaume, D.: An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mat. 20(2), 330–337 (2010)

    Article  Google Scholar 

  39. Michal, S., Ben, M.M., Ron, F., Assaf, S., Tal, D.: Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B. 1, 5210–5217 (2013)

    Article  Google Scholar 

  40. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)

    Article  Google Scholar 

  41. Benoit, M., Gaub, H.E.: Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cell Tissue Org. 172(3), 174–189 (2002)

    Article  Google Scholar 

  42. Helenius, J., Heisenberg, C.P., Gaub, H.E., Muller, D.L.: Single cell force spectroscopy. J. Cell Sci. 121(11), 1785–1791 (2008)

    Article  Google Scholar 

  43. Benoit, M., Selhuber-unkel, C.: Measuring cell adhesion forces: theory and principles. Methods Mol. Biol. 736, 355–377 (2011)

    Article  Google Scholar 

  44. Hampp, E., Botah, R., Odusanya, O.S., Anuku, N., Malatesta, K.A., Soboyejo, W.O.: Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. J. Mater. Res. 27(22), 2891–2901 (2012)

    Article  Google Scholar 

  45. Don, J.B., Noel, R.K., James, T.S.: [1984 (Williams & Wilkins)]. In: Garrity, G.M. (ed.) The Gammaproteobacteria. Bergey’s Manual of Systematic Bacteriology 2B (2nd ed.), p. 1108. Springer, NewYork (2005)

  46. Han, S.B., Kim, H.M., Kim, Y.H., Lee, C.W., Jang, E.S., Son, K.H., Kim, S.U., Kim, Y.K.: T cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. Int. J. Immunopharmacol. 20, 1–13 (1998)

    Article  Google Scholar 

  47. Montaner, B., Navarro, S., Piqué, M., Vilaseca, M., Martinell, M., Giralt, E., Gil, J., Pérez-Tomás, R.: Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in hematopoietic cancer cell lines. Br. J. Pharmacol. 131, 585–593 (2000)

    Article  Google Scholar 

  48. Song, M.J., Bae, J., Lee, D.S., Kim, C.H., Kim, J.S., Kim, S.W., Hong, S.I.: Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia Sp. KH-95. J. Biosci. Bioeng. 101, 157–161 (2006)

    Article  Google Scholar 

  49. Montaner, B., Pérez-Tomás, R.: Prodigiosin induces caspase-9 and caspase-8 activation and cytochrome. C release in Jurkat T cells. Ann. N.Y. Acad. Sci. 973, 246–249 (2002)

    Article  Google Scholar 

  50. Pérez-Tomás, R., Montaner, B., Llagostera, E., Soto-Cerrato, V.: The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66, 1447–1452 (2003)

    Article  Google Scholar 

  51. Francisco, R., Perez-Tomas, R., Gimenez-Bonafe, P., Soto-Cerrato, V., Gimenez-Xavier, P., Ambosio, S.: Mechanisms of prodigiosin cytotoxicity in human neurobblastoma cell lines. Eur. J. Pharmacol. 572(2–3), 111–119 (2007)

    Article  Google Scholar 

  52. Danyuo, Y., Ani, C.J., Obayemi, J.D., Dozie-Nwachukwu, S., Odusanya, O.S., Oni, Y., Anuku, N., Malatesta, K., Soboyejo, W.O.: Prodigiosin release from an implantable biomedical device: effect on cell viability. Adv. Mater. Res. 1132, 3–18 (2016)

    Article  Google Scholar 

  53. Arey, B.W., Shutthanandan, V., Jiang, W.: Helium ion microscopy versus scanning electron microscopy. In: Wiley, W.R. (ed.) Environmental Molecular Sciences Laboratory, p. 99354. Pacific Northwest National Laboratory, Richland (2010)

    Google Scholar 

  54. Ward, B.W., Notte, J.A., Economou, N.P.: Helium ion microscope: a new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. 24, 2871 (2006)

    Article  Google Scholar 

  55. Noruzi, M., Zare, D., Davoodi, D.: A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 94, 84–88 (2012)

    Article  Google Scholar 

  56. Malarkodi, C., Rajeshkumar, S., Vanaja, M., Paulkumar, K., Gnanajobitha, G., Annadurai, G.: Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J. Nanostruct. Chem. 3(30), 1–7 (2013)

    Google Scholar 

  57. Sunkar, S., Valli Nachiyar, C.V., Renugadevi, K.: Endophytic Bacillus cereus mediated synthesis of gold nanoparticles and their stabilization using biopolymer chitosan. J. Chem. Pharm. Res. 6(11), 434–443 (2014)

    Google Scholar 

  58. Xia, Y., Halas, N.J.: Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338–348 (2005)

    Article  Google Scholar 

  59. Khalil, M.M.H., Ismail, E.H., El-Magdoub, F.: Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab. J. Chem. 5, 431–437 (2012)

    Article  Google Scholar 

  60. Rastogi, L., Arunachalam, J.: Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Adv. Mat. Lett. 4(7), 548–555 (2013)

    Article  Google Scholar 

  61. Prevo, B.G., Esakoff, S.A., Mikhailovsky, A., Zasadzinski, J.A.: Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 4(8), 1183–1195 (2008)

    Article  Google Scholar 

  62. Gericke, M., Anthony, P.: Microbial production of gold nanoparticles. Gold Bull. 39(1), 22–28 (2006)

    Article  Google Scholar 

  63. Suryawanshi, M.L., Deshmukh, A.M.: Studies on Aquatic Actinomycetes from Shivaji Sagar, Ph. D. thesis, Shivaji University, Kolhapur, India (2008)

  64. Kathiresan, K., Manivannan, S., Nabeel, M.A., Dhivya, B.: Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B 71, 133–137 (2009)

    Article  Google Scholar 

  65. Joerger, R., Klaus, T., Granqvist, C.G.: Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv. Mater. 12, 407–409 (2000)

    Article  Google Scholar 

  66. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., Kumar, R.: Bioreduction of AuCl(4)(−) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles. Angew. Chem. Int. Ed. Engl. 40(19), 3585–3588 (2001)

    Article  Google Scholar 

  67. Nair, B., Pradeep, T.: Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2, 293–298 (2002)

    Article  Google Scholar 

  68. Njoki, P.N., Lim, I.I.S., Mott, D., Park, H.-Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J., Zhong, C.-J.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111(40), 14664–14669 (2007)

    Article  Google Scholar 

  69. Kumar, A., Vemula, P.K., Ajayan, P.M., John, G.: Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241 (2008)

    Article  Google Scholar 

  70. Xie, J., Zheng, Y., Ying, J.Y.: Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131(3), 888–889 (2009)

    Article  Google Scholar 

  71. Dykman, L.A., Khlebtsov, N.G.: Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3(2), 34–55 (2011)

    Google Scholar 

  72. Chandran, K., Song, S., Yun,S.: Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab. J. Chem. (2014). doi:10.1016/j.arabjc.2014.11.041

  73. Cytodianostics Inc. http://www.cytodiagnostics.com/store/pc/Introduction-to-Gold-Nanoparticle-Characterization-d3.htm. Accessed 29 Dec 2015

  74. Stepto, R.F.T.: Dispersity in polymer science (IUPAC Recommendations 2009). Pure Appl. Chem. 81(2), 351–353 (2009)

    Article  Google Scholar 

  75. International Standard ISO13321 Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy, International Organization for Standardization (ISO) (1996)

  76. Bhumkar, D.R., Joshi, H.M., Sastry, M., Pokharkar, V.B.: Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 24, 1415–1426 (2007)

    Article  Google Scholar 

  77. Mallikarjuna, N.N., Rajender, S.V.: Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin: catalytic polymerization of aniline and pyrrole. J. Nanomater. (2008). doi:10.1155/2008/782358

    Google Scholar 

  78. Kai, Q., Jingxia, L., Jiwei, M.: Yuqing.: preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 44(3), 754–758 (2007)

    Google Scholar 

  79. Lemberg, R., Barrett, J.: Cytochromes, pp. 277–279. Academic Press, New York (1973)

    Google Scholar 

  80. Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.: Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129, 13939–13948 (2007)

    Article  Google Scholar 

  81. Chow, M., Zukoski, C.J.: Gold sol formation mechanisms: role of colloidal stability. Colloid Interface Sci. 165, 97 (1994)

    Article  Google Scholar 

  82. Yao, T., Sun, Z., Li, Y., Pan, Z., Wei, H., Xie, Y., Nomura, M., Niwa, Y., Yan, W., Wu, Z., Jiang, Y., Liu, Q., Wei, S.: Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 132, 7696 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the SHESTCO-AUST-Princeton STEP-B Program and the African Centers of Excellence Program that were both funded by the World Bank. The authors are also grateful to Mr. Gerald Poiriere for assistance with microscopy techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. O. Soboyejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozie-Nwachukwu, S.O., Obayemi, J.D., Danyuo, Y.T. et al. Biosynthesis of Gold Nanoparticles and Gold/Prodigiosin Nanoparticles with Serratia marcescens Bacteria. Waste Biomass Valor 8, 2045–2059 (2017). https://doi.org/10.1007/s12649-016-9734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9734-7

Keywords

Navigation