Skip to main content

Advertisement

Log in

The Efficient Oxidation of Biomass-Derived 5-Hydroxymethyl Furfural to Produce 2,5-Diformylfuran Over Supported Cobalt Catalysts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The catalytic synthesis of 2,5-diformylfuran (DFF) from 5-hydroxymethylfurfural (HMF) attracts extensive attention in the research of biomass conversion. However, it is a challenge to achieve high conversion of HMF under mild conditions with a heterogeneous catalyst, which can be easily separated and recycled. Herein, we report a novel cobalt-based catalyst (CoxOy-N@TiO2) for the oxidation of HMF to DFF with 30 % aqueous tert-butyl hydroperoxide as the oxidant. A series of Co-based catalysts were prepared by a typical impregnation method, and detected by XRD, TEM and FT-IR techniques. Based on the experimental results of catalytic test, it is found that a 91 % conversion of HMF and 40 % selectivity of DFF was obtained with the CoxOy-N@TiO2 catalyst at 80 °C within 5 h. In addition, the CoxOy-N@TiO2 can be recycled up to five times without significant loss of activity.

Graphical Abstract

The efficient oxidation of 5-hydroxymethyl furfural, a biomass-derived platform compound, to produce 2,5-diformylfuran is achieved using CoxOy-N@TiO2 catalyst under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Putten, R.-J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., de Vries, J.G.: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013)

    Article  Google Scholar 

  2. Caes, B.R., Teixeira, R.E., Knapp, K.G., Raines, R.T.: Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustain. Chem. Eng. 3, 2591–2605 (2015)

    Article  Google Scholar 

  3. Gallezot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538–1558 (2012)

    Article  Google Scholar 

  4. Hopkins, K.T., Wilson, W.D., Bender, B.C., McCurdy, D.R., Hall, J.E., Tidwell, R.R., Kumar, A., Bajic, M., Boykin, D.W.: Extended aromatic furan amidino derivatives as anti-pneumocystis carinii agents. J. Med. Chem. 41, 3872–3878 (1998)

    Article  Google Scholar 

  5. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  Google Scholar 

  6. Amarasekara, A.S., Green, D., Williams, L.D.: Renewable resources based polymers: synthesis and characterization of 2,5-diformylfuran-urea resin. Eur. Polym. J. 45, 595–598 (2009)

    Article  Google Scholar 

  7. Delidovich, I., Hausoul, P.J.C., Deng, L., Pfützenreuter, R., Rose, M., Palkovits, R.: Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev. 116, 1540–1599 (2016)

    Article  Google Scholar 

  8. Xiang, T., Liu, X., Yi, P., Guo, M., Chen, Y., Wesdemiotis, C., Xu, J., Pang, Y.: Schiff base polymers derived from 2,5-diformylfuran. Polym. Int. 62, 1517–1523 (2013)

    Article  Google Scholar 

  9. Ma, J., Yu, X., Xu, J., Pang, Y.: Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer 53, 4145–4151 (2012)

    Article  Google Scholar 

  10. El-Hajj, T., Martin, J.C., Descotes, G.: Dérivés de l’hydroxyméthyl-5 furfural. I. Synthése de dérivés du di-et terfuranne. J. Heterocycl. Chem. 20, 233–235 (1983)

    Article  Google Scholar 

  11. Cottier, L., Descotes, G., Lewkowski, J., Skowronski, R.: Oxidation of 5-hydroxymethyl furfural under sonochemical conditions. Pol. J. Chem. 68, 693–698 (1994)

    Google Scholar 

  12. Cottier, L., Descotes, G., Lewkowski, J., Skowronski, R.: Ultrasonically accelerated syntheses of furan-2,4-dicarbaldehyde from 5-hydroxymethyl-2-furfural. Org. Prep. Proced. Int. 27, 564–566 (1995)

    Article  Google Scholar 

  13. Reijendam, J.W., Heeres, G.J., Janssen, M.J.: Polyenyl-substituted furans and thiophenes. A study of the electronic spectra. Tetrahedron 26, 1291–1301 (1970)

    Article  Google Scholar 

  14. Lv, G., Wang, H., Yang, Y., Deng, T., Chen, C., Zhu, Y., Hou, X.: Graphene oxide: a convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal. 5, 5636–5646 (2015)

    Article  Google Scholar 

  15. Nie, J., Xie, J., Liu, H.: Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J. Catal. 301, 83–91 (2013)

    Article  Google Scholar 

  16. Partenheimer, W., Grushin, V.V.: Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural: unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal = bromide catalysts. Adv. Synth. Catal. 343, 102–111 (2001)

    Article  Google Scholar 

  17. Tong, X., Sun, Y., Bai, X., Li, Y.: Highly efficient aerobic oxidation of biomass derived 5-hydroxymethyl furfural to produce 2,5-diformylfuran in the presence of copper salts. RSC Adv. 4, 44307–44311 (2014)

    Article  Google Scholar 

  18. Zhu, Y., Shen, M., Xia, Y.: Au/MnO2 nanostructured catalysts and their catalytic performance for the oxidation of 5-(hydroxymethyl)furfural. Catal. Commun. 64, 37–43 (2015)

    Article  Google Scholar 

  19. Zhou, C., Deng, W., Wan, X., Zhang, Q., Yang, Y., Wang, Y.: Functionalized carbon nanotubes for biomass conversion: the base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotubecatalyst. ChemCatChem 7, 2853–2863 (2015)

    Article  Google Scholar 

  20. Casanova, O., Iborra, S., Corma, A.: Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2, 1138–1144 (2009)

    Article  Google Scholar 

  21. Wan, X., Zhou, C., Chen, J., Deng, W., Zhang, Q., Yang, Y., Wang, Y.: Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles. ACS Catal. 4, 2175–2185 (2014)

    Article  Google Scholar 

  22. Hansen, T.S., Sádaba, I., García-Suárez, E.J., Riisager, A.: Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Appl. Catal. A Gen. 456, 44–50 (2013)

    Article  Google Scholar 

  23. Takagaki, A., Takahashi, M., Nishimura, S., Ebitani, K.: One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal. 1, 1562–1565 (2011)

    Article  Google Scholar 

  24. Sádaba, I., Gorbanev, Y.Y., Riisager, A., Putluru, S.S.R., Berg, R.W., Riisager, A.: Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem 5, 284–293 (2013)

    Article  Google Scholar 

  25. Moreau, C., Durand, R., Pourcheron, C., Tichit, D.: Selective oxidation of 5-hydroxymethylfurfural to 2,5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts. Surf. Sci. Catal. 108, 399–406 (1997)

    Article  Google Scholar 

  26. Amarasekara, A.S., Green, D., McMillan, E.: Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts. Catal. Commun. 9, 286–288 (2008)

    Article  Google Scholar 

  27. Jia, C., Schwickardi, M., Weidenthaler, C., Schmidt, W., Korhonen, S., Weckhuysen, B.M., Schüth, F.: Co3O4–SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc. 133, 11279–11288 (2011)

    Article  Google Scholar 

  28. Banerjee, D., Jagadeesh, R.V., Junge, K., Pohl, M.-M., Radnik, J., Brückner, A., Beller, M.: Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angew. Chem. 126, 4448–4452 (2014)

    Article  Google Scholar 

  29. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(47), 1072–1075 (2008)

    Article  Google Scholar 

  30. Wang, J.H., Cui, W., Liu, Q., Xing, Z.C., Asiri, A.M., Sun, X.P.: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016)

    Article  Google Scholar 

  31. Yu, L., Liao, S., Ning, L., Xue, S., Liu, Z., Tong, X.: Sustainable and cost–effective protocol for cascade oxidative condensation of furfural with aliphatic alcohols. ACS Sustain. Chem. Eng. 4, 1894–1898 (2016)

    Article  Google Scholar 

  32. Chen, Y., Lin, A., Gan, F.: Preparation of nano-TiO2 from TiCl4 by dialysis hydrolysis. Powder Technol. 167, 109–116 (2006)

    Article  Google Scholar 

  33. Jagadeesh, R.V., Junge, H., Pohl, M.-M., Radnik, J., Brückner, A., Beller, M.: Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J. Am. Chem. Soc. 135, 10776–10782 (2013)

    Article  Google Scholar 

  34. Vuyyuru, K.R., Strasser, P.: Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today 195, 144–154 (2012)

    Article  Google Scholar 

  35. Ståhlberg, T., Eyjólfsdóttir, E., Gorbanev, Y.Y., Sádaba, I., Riisager, A.: Aerobic oxidation of 5-(hydroxymethyl)furfural in ionic liquids with solid ruthenium hydroxide catalysts. Catal. Lett. 142, 1089–1097 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the National Natural Science Foundation of China (No. 21336008) and Innovation and Entrepreneurship Training Program for College Students (No. 201410060054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengyun Liao or Xinli Tong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12649_2016_9724_MOESM1_ESM.docx

Electronic Supplementary Information (ESI) available: IR spectra of the supported CoxOy-N catalyst, full XPS spectrum of CoxOy-N@TiO2 catalyst, XPS analysis for the composition of CoxOy-N@TiO2 catalyst, the results of both GC–MS and GC analysis of the catalytic products can be found online version. See doi: 10.1039/x0xx00000x (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Liao, S., Sun, Y. et al. The Efficient Oxidation of Biomass-Derived 5-Hydroxymethyl Furfural to Produce 2,5-Diformylfuran Over Supported Cobalt Catalysts. Waste Biomass Valor 9, 95–101 (2018). https://doi.org/10.1007/s12649-016-9724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9724-9

Keywords

Navigation