Skip to main content
Log in

Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biochar samples were prepared from date seed biomass using slow pyrolysis at different temperatures (350–550 °C) and heating time (1–3 h). The influence of pyrolysis temperature and heating time on the physiochemical properties of the biochar were studied. Methylene blue (MB) adsorption by the biochar was also studied. Biochar yield decreased with increasing pyrolysis temperature and heating time. Carbon content, ash content and pH of the biochar increased with increasing pyrolysis temperature as well as heating time. FTIR analysis and scanning electron microscopy indicated that the biochars possess various surface functional groups such as carboxylic and phenolic groups. Batch adsorption results showed that the capacity of biochar to remove MB from aqueous solutions correlated positively with pyrolysis temperature and heating time. The highest MB removal capacity was achieved by the biochar prepared at 550 °C and 3 h heating time. The equilibrium results for MB adsorption on the biochar prepared at 550 °C and 3 h was well fitted to Langmuir with maximum adsorption (qmax) of 0.133 mM g−1 (42.57 mg g−1). The results suggest that date seed derived biochar can be a viable option for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)

    Article  Google Scholar 

  2. Ahmed, M.J., Theydan, S.K.: Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technol. 229, 237–245 (2012). doi:10.1016/j.powtec.2012.06.043

    Article  Google Scholar 

  3. Ali-Mohamed, A.Y., Khamis, A.S.: Mineral ion content of the seeds of six cultivars of Bahraini date palm (Phoenix dactylifera). J. Agric. Food Chem. 52(21), 6522–6525 (2004)

    Article  Google Scholar 

  4. American Standard Test Method (ASTM D6385).: Standard Test Method for Determining Acid Extractable Content in Activated Carbon by Ashing. (2011). doi:10.1520/D6385-99R11

  5. American Standard Test Method (ASTM D2866).: Standard Test Method for Total Ash Content of Activated Carbon. (2011). doi:10.1520/D2866-11

  6. American Standard Test Method (ASTM E 1755-01).: Standard Test Method for Determining Ash in Biomass. (2008). doi:10.1520/E1755-01R07

  7. American Standard Test Method, (ASTM D6851).: Standard Test Method for Determination of Contact pH with Activated Carbon. (2011). doi:10.1520/D6851-02R11

  8. American Standard Test Method, (ASTM C837).: Standard Test Method for Methylene Blue Index of Clay. USA. (2014). doi:10.1520/C0837-09R14

  9. Arshadi, M., Amiri, M.J., Mousavi, S.: Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Res. Ind. 6, 1–17 (2014). doi:10.1016/j.wri.2014.06.001

    Article  Google Scholar 

  10. Ashour, S.S.: Kinetic and equilibrium adsorption of methylene blue and remazol dyes onto steam-activated carbons developed from date pits. J. Saudi Chem. Soc. 14(1), 47–53 (2010). doi:10.1016/j.jscs.2009.12.008

    Article  Google Scholar 

  11. Ates, F., Tezcan Un, U.: Production of char from hornbeam sawdust and its performance evaluation in the dye removal. J. Anal. Appl. Pyrol. 103, 159–166 (2013). doi:10.1016/j.jaap.2013.01.021

    Article  Google Scholar 

  12. Balistrieri, L.S., Murray, J.W.: The surface chemistry of goethite (alpha FeOOH) in major ion seawater. Am. J. Sci. 281(6), 788–806 (1981)

    Article  Google Scholar 

  13. Besbes, S., Blecker, C., Deroanne, C., Drira, N.E., Attia, H.: Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem. 84(4), 577–584 (2004)

  14. Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2), 145–149 (2002)

    Article  Google Scholar 

  15. Bouchelta, C., Medjram, M.S., Bertrand, O., Bellat, J.-P.: Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrol. 82(1), 70–77 (2008). doi:10.1016/j.jaap.2007.12.009

    Article  Google Scholar 

  16. Bouchelta, C., Medjram, M.S., Zoubida, M., Chekkat, F.A., Ramdane, N., Bellat, J.-P.: Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. J. Anal. Appl. Pyrol. 94, 215–222 (2012). doi:10.1016/j.jaap.2011.12.014

    Article  Google Scholar 

  17. Bouhamed, F., Elouear, Z., Bouzid, J.: Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics. J. Taiwan Inst. Chem. Eng. 43(5), 741–749 (2012). doi:10.1016/j.jtice.2012.02.011

    Article  Google Scholar 

  18. Bulut, Y., Aydın, H.: A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1), 259–267 (2006)

    Article  Google Scholar 

  19. Chen, B., Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1), 127–133 (2009). doi:10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  20. Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S.: Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manage. Res. 32(4), 331–339 (2014). doi:10.1177/0734242X14525822

    Article  Google Scholar 

  21. Dong, X., Ma, L.Q., Li, Y.: Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 190(1), 909–915 (2011). doi:10.1016/j.jhazmat.2011.04.008

    Article  Google Scholar 

  22. El May, Y., Dorge, S., Jeguirim, M., Trouvé, G., Said, R.: Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery. Aerosol Air Qual. Res. 12(5), 814–825 (2012)

    Google Scholar 

  23. Foo, K.Y., Hameed, B.H.: Preparation of activated carbon from date stones by microwave induced chemical activation: application for methylene blue adsorption. Chem. Eng. J. 170(1), 338–341 (2011). doi:10.1016/j.cej.2011.02.068

    Article  Google Scholar 

  24. Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M., Chang, J.: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage. 118, 196–204 (2013)

    Article  Google Scholar 

  25. Itodo, A., Itodo, H., Gafar, M.: Estimation of specific surface area using Langmuir isotherm method. J. Appl. Sci. Environ. Manage. 14(4), 141–145 (2011)

  26. Kannan, N., Sundaram, M.M.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm. 51(1), 25–40 (2001)

    Article  Google Scholar 

  27. Kim, K.H., Kim, J.Y., Cho, T.S., Choi, J.W.: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 118, 158–162 (2012). doi:10.1016/j.biortech.2012.04.094

    Article  Google Scholar 

  28. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Soja, G.: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41(4), 990–1000 (2012). doi:10.2134/jeq2011.0070

    Article  Google Scholar 

  29. Kołodyńska, D., Wnętrzak, R., Leahy, J.J., Hayes, M.H.B., Kwapiński, W., Hubicki, Z.: Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 197, 295–305 (2012). doi:10.1016/j.cej.2012.05.025

    Article  Google Scholar 

  30. Mahdi, Z., El Hanadeh, A., Yu, Q.: Date palm (Phoenix dactylifera L.) seed characterization for biochar preparation. Paper Presented at the 6th International Conference on Engineering, Project, and Production Management (EPPM2015). Gold Coast, Queensland, Australia (2015)

  31. Mudoga, H.L., Yucel, H., Kincal, N.S.: Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresour. Technol. 99(9), 3528–3533 (2008)

    Article  Google Scholar 

  32. Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014). doi:10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  33. Mukherjee, A., Zimmerman, A.R., Harris, W.: Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4), 247–255 (2011). doi:10.1016/j.geoderma.2011.04.021

    Article  Google Scholar 

  34. Nunes, C.A., Guerreiro, M.C.: Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim. Nova 34(3), 472–476 (2011)

    Article  Google Scholar 

  35. Özer, D., Dursun, G., Özer, A.: Methylene blue adsorption from aqueous solution by dehydrated peanut hull. J. Hazard. Mater. 144(1), 171–179 (2007)

    Article  Google Scholar 

  36. Pellera, F.M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.Y., Gidarakos, E.: Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J. Environ. Manage. 96(1), 35–42 (2012). doi:10.1016/j.jenvman.2011.10.010

    Article  Google Scholar 

  37. Pignatello, J.J., Kwon, S., Lu, Y.: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol. 40(24), 7757–7763 (2006)

    Article  Google Scholar 

  38. Qiu, Y., Zheng, Z., Zhou, Z., Sheng, G.D.: Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour. Technol. 100, 5348–5351 (2009)

    Article  Google Scholar 

  39. Sellaperumal, P.: Evaluation of thermochemical decomposition of various lignocellulosic biomasses for biochar production. (Dissertation/Thesis), ProQuest DissertSations Publishing (2012)

  40. Rutherford, D.W., Wershaw, R.L., Cox, L.G.: Changes in composition and porosity occurring during the thermal degradation of wood and wood components. US Department of the Interior, US Geological Survey (2005)

  41. Saafi-Ben Salah, E.B., Flamini, G., El Arem, A., Issaoui, M., Dabbou, S., BenYahia, L., Achour, L.: Compositional characteristics and aromatic profile of date palm seeds from seven varieties grown in Tunisia. Int. J. Food Sci. Technol. 47(9), 1903–1908 (2012)

    Article  Google Scholar 

  42. Shaaban, A., Se, S.-M., Dimin, M.F., Juoi, J.M., Mohd Husin, M.H., Mitan, N.M.M.: Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrol. 107, 31–39 (2014). doi:10.1016/j.jaap.2014.01.021

    Article  Google Scholar 

  43. Sekirifa, M.L., Hadj-Mahammed, M., Pallier, S., Baameur, L., Richard, D., Al-Dujaili, A.H.: Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide. J. Anal. Appl. Pyrol. 99, 155–160 (2013). doi:10.1016/j.jaap.2012.10.007

    Article  Google Scholar 

  44. Sun, L., Wan, S., Luo, W.: Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour. Technol. 140, 406–413 (2013). doi:10.1016/j.biortech.2013.04.116

    Article  Google Scholar 

  45. Yuan, H., Lu, T., Wang, Y., Huang, H., Chen, Y.: Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO 2 emission. J. Anal. Appl. Pyrol. 110, 277–284 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was a part of research scholarship program supported by the higher committee for education development in Iraq (HCED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Mahdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, Z., Hanandeh, A.E. & Yu, Q. Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass. Waste Biomass Valor 8, 2061–2073 (2017). https://doi.org/10.1007/s12649-016-9714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9714-y

Keywords

Navigation