Skip to main content

Advertisement

Log in

Transformation of Palm Oil Mill Effluent to Terpolymer Polyhydroxyalkanoate and Biodiesel Using Rummeliibacillus pycnus Strain TS8

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aimed to transform wastewater from palm oil mill to the valuable products, especially the terpolymer PHA and biodiesel using Rummeliibacillus pycnus TS8. The cultivation of R. pycnus TS8 in POME was conducted in a 1-L aeration reactor. The optimization of bioproducts production was investigated by a statistical method with the central composite rotatable design. The result found that the highest cell dry weight (CDW) and bioproduct accumulation was obtained at the C/N ratio, aeration rate and phosphorus addition of 10, 1.00 vvm and 0.10 g/L, respectively. Moreover, R. pycnus TS8 accumulated P (3HB-co-3HV-co-3HHx) with 42.8 mol% 3HB, 34.9 mol% 3HV and 22.38 mol% 3HHx. In addition, R. pycnus TS8 also accumulated lipid, especially oleic acid (59.5 % CDW). In addition, the experiment was examined in a 72-L bioreactor to determine the properties of PHA and further used as feedstock for biodiesel production. Afterward, biomass and bioproducts were recovered. The terpolymer PHA and intracellular fatty acid were extracted. The characteristics of terpolymer showed that Tg, Tm, tensile strength, Young’s modulus and elongation at break were −21 °C, 147 °C, 27.67 MPa, 1260 MPa and 11.7 %, respectively. The bioproducts were hydrolyzed to fatty acid methyl ester (FAME) with a heating value, flash point and pour point of 32.9 kJ/g, 132 °C and 7 °C, respectively. The results illustrated that the properties of terpolymer PHA and FAME produced from this study showed a possibility for further application in biopolymer and biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010)

    Article  Google Scholar 

  2. Bhubalan, K., Rathi, D.N., Abe, H., Iwata, T., Sudesh, K.: Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym. Degrad. Stab. 95, 1436–1442 (2010)

    Article  Google Scholar 

  3. Zhang, X.J., Luo, R.C., Wang, Z., Deng, Y., Chen, G.Q.: Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules 10, 707–711 (2009)

    Article  Google Scholar 

  4. Bhubalan, K., Lee, W.H., Loo, C.Y., Yamamoto, T., Tsuge, T., Doi, Y., Sudesh, K.: Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stab. 93, 17–23 (2008)

    Article  Google Scholar 

  5. Höfer, P., Vermette, P., Groleaua, D.: Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: combining desirable thermal properties with functionality. Biochem. Eng. J. 54, 26–33 (2011)

    Article  Google Scholar 

  6. Tappel, R.C., Pan, W., Bergy, N.S., Wang, Q., Patterson, I.L., Ozumba, O.A., Matsumoto, K., Taguchi, S., Nomura, C.T.: Engineering Escherichia coli for improved production of short-chain-length-co-medium-chain-length poly[(R)-3-hydroxyalkanoate] (SCL-co-MCL PHA) copolymers from renewable non-fatty acid feedstocks. ACS Sustain. Chem. Eng. 2, 1879–1887 (2014)

    Article  Google Scholar 

  7. Vaishampayan, P., Miyashita, M., Ohnishi, A., Satomi, M., Rooney, A., La Duc, M.T., Venkateswaran, K., et al.: Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int. J. Syst. Evol. Microbiol. 59, 1094–1099 (2009)

    Article  Google Scholar 

  8. Junpadit, P., Boonsawang, P.: Isolation and selection of bacteria for polyhydroxyalkanoate (PHA) production from palm oil mill effluent (POME). In: The 22nd Annual Meeting of the Thai Society for Biotechnology, Proceedings of the International Conference on Biotechnology for Healthy Living. Prince of Songkla University, Trang, pp. 787–793 (2010)

  9. Alvarez, H.M., Steinbüchel, A.: Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 60, 367–376 (2002)

    Article  Google Scholar 

  10. Arcos-Hernandez, M., Pratt, S., Laycock, B., Johansson, P., Werker, A., Lant, P.: Waste activated sludge as biomass for production of commercial-grade polyhydroxyalkanoate (PHA). Waste Biomass Valorization 4, 117–127 (2013)

    Article  Google Scholar 

  11. Verma, P., Sharma, M.P.: Review of process parameters for biodiesel production from different feedstocks. Renew. Sustain. Energy Rev. 62, 1063–1071 (2016)

    Article  Google Scholar 

  12. Adewale, P., Dumont, M.J., Ngadi, M.: Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew. Sustain. Energy Rev. 45, 574–588 (2015)

    Article  Google Scholar 

  13. Wang, S.Y., Wang, Z., Liu, M.M., Xu, Y., Zhang, X.J., Chen, G.Q.: Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy 34, 1216–1222 (2010)

    Article  Google Scholar 

  14. A.P.H.A.: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (2005)

  15. Sin, M.C., Gan, S.N., Annuar, M.S.M., Tan, I.K.P.: Thermodegradation of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas putida from oleic acid. Polym. Degrad. Stab. 95, 2334–2342 (2010)

    Article  Google Scholar 

  16. Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S.: Polylactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010)

    Article  Google Scholar 

  17. ASTM: Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, Method D6751-07. In: The American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA (2008)

  18. Ongmali, R., Phunpruch, S., Thawornchaisit, U.: Cellular lipid production of a heterotrophic bacterium isolated from poultry processing wastewater. Songklanakarin J. Sci. Technol. 36, 359–365 (2014)

    Google Scholar 

  19. Santala, S., Efimova, E., Kivinen, V., Larjo, A., Aho, T., Karp, M., Santala, V.: Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb. Cell Fact. 10, 36 (2011)

    Article  Google Scholar 

  20. Kosa, M., Ragauskas, A.J.: Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol. 29, 53–61 (2011)

    Article  Google Scholar 

  21. Hernández, M.A., Mohn, W.W., Martínez, E., Rost, E., Alvarez, A.F., Alvarez, H.M.: Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genom. 9, 600 (2008)

    Article  Google Scholar 

  22. Hori, K., Abe, M., Unno, H.: Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1. J. Biosci. Bioeng. 108, 319–324 (2009)

    Article  Google Scholar 

  23. Magdouli, S., Brar, S.K., Blais, J.F., Tyagi, R.D.: How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74, 268–279 (2015)

    Article  Google Scholar 

  24. Akiyama, M., Taima, Y., Doi, Y.: Production of poly (3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl. Microbiol. Biotechnol. 37, 698–701 (1992)

    Article  Google Scholar 

  25. Wong, Y.M., Brigham, C.J., Rha, C.K., Sinskey, A.J., Sudesh, K.: Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327 (2012)

    Article  Google Scholar 

  26. Cao, Y., Liu, W., Xu, X., Zhang, H., Wang, J., Xian, M.: Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol. Biofuels 7, 59 (2014)

    Article  Google Scholar 

  27. Moser, B.R., Vaughn, S.F.: Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37, 31–41 (2012)

    Article  Google Scholar 

  28. Ray, S., Prajapati, V., Patel, K., Trivedi, U.: Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste. Int. J. Biol. Macromol. 86, 741–749 (2016)

    Article  Google Scholar 

  29. Kourmentza, C., Ntaikou, I., Lyberatos, G., Kornaros, M.: Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int. J. Biol. Macromol. 74, 202–210 (2015)

    Article  Google Scholar 

  30. Bhati, R., Mallick, N.: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res. 7, 78–85 (2015)

    Article  Google Scholar 

  31. Chia, K.H., Ooi, T.F., Saika, A., Tsuge, T., Sudesh, K.: Biosynthesis and characterization of novel polyhydroxyalkanoate polymers with high elastic property by Cupriavidus necator PHB-4 transformant. Polym. Degrad. Stab. 95, 2226–2232 (2010)

    Article  Google Scholar 

  32. Chuah, J.A., Yamada, M., Taguchi, S., Sudesh, K., Doi, Y., Numata, K.: Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stab. 98, 331–338 (2013)

    Article  Google Scholar 

  33. Zhao, W., Chen, G.Q.: Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem. 42, 1342–1347 (2007)

    Article  Google Scholar 

  34. Elain, A., Le Grand, A., Corre, Y.-M., Le Fellic, M., Hachet, N., Le Tilly, V., Loulergue, P., Audic, J.-L., Bruzaud, S.: Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production. Ind. Crops Prod. 80, 1–5 (2016)

    Article  Google Scholar 

  35. Modi, S., Koelling, K., Vodovotz, Y.: Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur. Polym. J. 47, 179–186 (2011)

    Article  Google Scholar 

  36. Castilho, L.R., Mitchell, D.A., Freire, D.M.G.: Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 100, 5996–6009 (2009)

    Article  Google Scholar 

  37. Saengea, C., Cheirsilp, B., Suksaroj, T.T., Bourtoom, T.: Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 46, 210–218 (2011)

    Article  Google Scholar 

  38. Tongurai, C., Klinpikul, S., Bunyakan, C., Kiatsimkul, P.: Biodiesel production from palm oil. Songklanakarin J. Sci. Technol. 23, 831–841 (2001)

    Google Scholar 

  39. Singh, D., Singal, S.K., Garg, M.O., Maiti, P., Mishra, S., Ghosh, P.K.: Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels. Energy Convers. Manag. 106, 892–900 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Council of Thailand (NRCT) and Agricultural Research Development Agency (ARDA) (CRP5605021160), Faculty of Agro-Industry, Faculty of Environmental Management and Graduate School, Prince of Songkla University (AGR550013S, Envi0012554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyarat Boonsawang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junpadit, P., Suksaroj, T.T. & Boonsawang, P. Transformation of Palm Oil Mill Effluent to Terpolymer Polyhydroxyalkanoate and Biodiesel Using Rummeliibacillus pycnus Strain TS8 . Waste Biomass Valor 8, 1247–1256 (2017). https://doi.org/10.1007/s12649-016-9711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9711-1

Keywords

Navigation