Skip to main content
Log in

Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aims to examine the biomass production of local microalgae isolates; Chlorella sp., Scenedesmus sp. and Oscillatoria sp. cultivated in high nitrate (NO3 ) concentration of nitrified landfill leachate (NLL).

Methods

NLL concentration of 10–30 % v/v was optimized for maximum microalgae growth, NO3 removal performance, and biomass productivity. The biomass produced was further characterized for carbohydrate, lipid, and protein composition.

Results

NO3 was able to be removed by all microalgae isolates with a NO3 removal rate of 26.5–27.5 mg/L/day and a maximum NO3 removal percentage of 84 % (20 % NLL) by Oscillatoria sp. Highest biomass productivity (0.11 g/L/day), carbohydrate productivity (2.92 g/L/day), lipid productivity (1.41 g/L/day), and protein productivity (4.87 g/L/day) were observed for Oscillatoria sp. cultured in 10 % NLL. Meanwhile, highest lipid, carbohydrate, and protein content was observed in Chlorella sp. cultured in 10 % NLL (18.23 %), Chlorella sp. cultured in 30 % NLL (37.5 %), and Oscillatoria sp. cultured in 20 % NLL (61.4 %), respectively.

Conclusions

These results suggest that dual application of microalgae for phycoremediation of high NO3 wastewater and biomass production was feasible particularly for Oscillatoria sp. in term of high nitrate removal capability and biomass productivity. This finding is significant for potential application of microalgae biomass as biofuels feedstock in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yusof, N., Hassan, M.A., Phang, L.Y., Tabatabaei, M., Othman, M.R., Mori, M., Wakisaka, M., Sakai, K., Shirai, Y.: Nitrification of high-strength ammonium landfill leachate with microbial community analysis using fluorescence in situ hybridization (FISH). Waste Manag. Res. 29(6), 602–611 (2011). doi:10.1177/0734242X10397581

    Article  Google Scholar 

  2. Campbell, M.N.: Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng. J. 1, 2–7 (2008)

    Google Scholar 

  3. Markou, G., Angelidaki, I., Georgakakis, D.: Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 96(3), 631–645 (2012). doi:10.1007/s00253-012-4398-0

    Article  Google Scholar 

  4. Singh, A., Olsen, S.I.: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88(10), 3548–3555 (2011). doi:10.1016/j.apenergy.2010.12.012

    Article  Google Scholar 

  5. Yeesang, C., Cheirsilp, B.: Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102(3), 3034–3040 (2011). doi:10.1016/j.biortech.2010.10.013

    Article  Google Scholar 

  6. Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A.: Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian J. Plant Sci. 5(5), 799–804 (2006). doi:10.3923/ajps.2006.799.804

    Article  Google Scholar 

  7. Markou, G.: Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour. Technol. 193, 35–41 (2015)

    Article  Google Scholar 

  8. Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., Dong, R.: Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour. Technol. 184, 116–122 (2015)

    Article  Google Scholar 

  9. Nordin, N., Samsudin, S., Yusof, N.: 18S rRNA molecular characterization of microalgae isolated for high nitrate wastewater treatment and biomass production. In: International Postgraduate Conference on Science and Mathematics 2013 (IPCSM2013), Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak (5th–6th October 2013)

  10. Association, American Public Health: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC (2005)

    Google Scholar 

  11. Ji, M.K., Kim, H.C., Sapireddy, V.R., Yun, H.S., Abou, S.R.A.I., Choi, J., Lee, W., Timmes, T.C., Inamuddin, R., Jeon, B.H.: Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW04. Appl. Microbiol. Biotechnol. 97(6), 2701–2710 (2013). doi:10.1007/s00253-012-4097-x

    Article  Google Scholar 

  12. Guillard, R.R.L., Ryther, J.H.: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula Confervaceae (cleve). Can. J. Microbiol. 8, 229–239 (1962)

    Article  Google Scholar 

  13. George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, M., Ghosh, T., Mishra, S.: Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-a potential strain for biofuel production. Bioresour. Technol. 171, 367–374 (2014). doi:10.1016/j.biortech.2014.08.086

    Article  Google Scholar 

  14. Dayananda, C., Kumudha, A., Sarada, R., Ravishankar, G.A.: Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Essays 5(17), 2497–2505 (2010)

    Google Scholar 

  15. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956). doi:10.1021/ac60111a017

    Article  Google Scholar 

  16. Griffiths, M.J., Harrison, S.T.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21(5), 493–507 (2009). doi:10.1007/s10811-008-9392-7

    Article  Google Scholar 

  17. Blight, E.J., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8), 911–9117 (1959). doi:10.1139/o59-099

    Article  Google Scholar 

  18. Depraetere, O., Foubert, I., Muylaert, K.: Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresour. Technol. 148, 366–372 (2013). doi:10.1016/j.biortech.2013.08.165

    Article  Google Scholar 

  19. Tam, N.F.Y., Wong, Y.S.: Effect of immobilized microalgal bead concentration in wastewater nutrient removal. Environ. Pollut. 107(1), 145–151 (2000). doi:10.1016/S0269-7491(99)00118-9

    Article  Google Scholar 

  20. Kshirsagar, A.D.: Bioremediation of wastewater by using microalgae: an experimental study. Int. J. Life Sci. Biotechnol Pharm. Res. 2(3), 339–346 (2013)

    Google Scholar 

  21. Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., Jinpeng, L.: Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour. Technol. 102(21), 9884–9890 (2011). doi:10.1016/j.biortech.2011.08.016

    Article  Google Scholar 

  22. Aslan, S., Kapdan, I.K.: Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28(1), 64–70 (2006). doi:10.1016/j.ecoleng.2006.04.003

    Article  Google Scholar 

  23. Craggs, R.J., McAuley, P.J., Smith, V.J.: Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Resour. 31(7), 1701–1707 (1997). doi:10.1016/S0043-1354(96)00093-0

    Google Scholar 

  24. Xin, L., Hu, H.Y., Ke, G., Sun, Y.X.: Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101(14), 5494–5500 (2010). doi:10.1016/j.biortech.2010.02.016

    Article  Google Scholar 

  25. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sust. Energy Rev. 19, 360–369 (2013). doi:10.1016/j.rser.2012.11.030

    Article  Google Scholar 

  26. Quiros, R.: The nitrogen to phosphorus ratio for lakes: a cause or a consequence of aquatic biology? In: Cirelli, A.F., Marquisa, G.C. (eds.) El Agua en Iberoamerica: De la Limnologia a la Gestion en Sudamerica, pp. 11–26. CYTED XVII, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires, Buenos Aires (2002)

    Google Scholar 

  27. Shi, J., Podola, B., Melkonian, M.: Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J. Appl. Phycol. 19(5), 417–423 (2007). doi:10.1007/s10811-006-9148-1

    Article  Google Scholar 

  28. Stumm, W., Morgan, J.J.: Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, Hoboken (1981)

    Google Scholar 

  29. Li, Y., Han, D., Sommerfeld, M., Hu, Q.: Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour. Technol. 102(1), 123–129 (2011). doi:10.1016/j.biortech.2010.06.036

    Article  Google Scholar 

  30. Samori, G., Samori, C., Guerrini, F., Pistocchi, R.: Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res. 47(2), 791–801 (2013). doi:10.1016/j.watres.2012.11.006

    Article  Google Scholar 

  31. Zhou, X., Yuan, S., Chen, R., Song, B.: Modelling microalgae growth in nitrogen-limited continuous culture. Energy 73, 575–580 (2014). doi:10.1016/j.energy.2014.06.058

    Article  Google Scholar 

  32. Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T.: Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101(1), 58–64 (2010). doi:10.1016/j.biortech.2009.02.076

    Article  Google Scholar 

  33. Kong, Q.X., Li, L., Martinez, B., Chen, P., Ruan, R.: Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol. 160(1), 9–18 (2010). doi:10.1007/s12010-009-8670-4

    Article  Google Scholar 

  34. Wen, Z., Liu, J., Chen, F.: Biofuel from microalgae. Compr. Biotechnol. 1, 127–133 (2011)

    Article  Google Scholar 

  35. Brune, D.E., Lundquist, T., Benemann, J.R.: Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J. Environ. Eng. 135, 1136–1144 (2009). doi:10.1061/(ASCE)EE.1943-7870.0000100

    Article  Google Scholar 

  36. Brennan, L., Owende, P.: Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energy Rev. 14(2), 557–577 (2010). doi:10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  37. Roeselers, G., Loosdrecht, M.C.M., Muyzer, G.: Phototrophic biofilms and their potential applications. J. Appl. Phycol. 20(3), 227–235 (2008). doi:10.1007/s10811-007-9223-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sultan Idris Education University for financing this study through University Research Grant (Code: 2013-0051-102-01). We are also grateful to Worldwide Landfill Sdn. Bhd. for their technical support throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norjan Yusof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordin, N., Yusof, N. & Samsudin, S. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste Biomass Valor 8, 2301–2311 (2017). https://doi.org/10.1007/s12649-016-9709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9709-8

Keywords

Navigation