Skip to main content
Log in

Catalytic Conversion of Cassava Residues to Ethylene Glycol Via a One-Pot Hydrothermal Reaction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cassava residue was proposed as a raw material for the production of ethylene glycol (EG) via a one-pot hydrothermal reaction in the present study. Various mixed catalysts consisting of activated carbon supported Ru (Ru/AC) and a tungsten species were used for the conversion of cassava residues, and the effects of various reaction conditions on the catalytic performance were investigated. When the reaction was carried out at 245 °C for 60 min, the Ru/AC–H2WO4 mixed catalyst showed a EG yield of 53.1 % with a total polyols yield of 80 %, which was confirmed to be the most active among the prepared catalysts. The excellent catalytic performance using cassava residue as the feedstock mainly resulted from a high content of carbohydrates and a low amount of lignin in cassava residues. Furthermore, the Ru/AC–H2WO4 catalyst also showed reasonable stability during the hydrothermal conversion of cassava residues for EG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yue, H., Zhao, Y., Ma, X., Gong, J.: Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012)

    Article  Google Scholar 

  2. Wang, A., Zhang, T.: One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 46, 1377–1386 (2013)

    Article  Google Scholar 

  3. Celik, F.E., Lawrence, H., Bell, A.T.: Synthesis of precursors to ethylene glycol from formaldehyde and methyl formate catalyzed by heteropoly acids. J. Mol. Catal. A: Chem. 288, 87–96 (2008)

    Article  Google Scholar 

  4. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., Chen, J.G.: Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. 47, 8510–8513 (2008)

    Article  Google Scholar 

  5. Zheng, M., Pang, J., Wang, A., Zhang, T.: One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization. Chin. J. Catal. 35, 602–613 (2014)

    Article  Google Scholar 

  6. Li, C., Zheng, M., Wang, A., Zhang, T.: One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 5, 6383–6390 (2012)

    Article  Google Scholar 

  7. Zheng, M., Wang, A., Ji, N., Pang, J., Wang, X., Zhang, T.: Transition metal-tungsten bimetallic catalysts for the conversion of cellulose to ethylene glycol. ChemSusChem 10, 63–66 (2010)

    Article  Google Scholar 

  8. Tai, Z., Zhang, J., Wang, A., Pang, J., Zheng, M., Zhang, T.: Catalytic conversion of cellulose to ethylene glycol over a low-cost mixed catalyst of Raney Ni and Tungstic acid. ChemSusChem 6, 652–658 (2013)

    Article  Google Scholar 

  9. Tai, Z., Zhang, J., Wang, A., Zheng, M., Zhang, T.: Temperature- controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem. Commun. 48, 7052–7054 (2012)

    Article  Google Scholar 

  10. Liu, Y., Luo, C., Liu, H.: Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew. Chem. Int. Ed. 51, 3249–3253 (2012)

    Article  Google Scholar 

  11. Yang, Y., Zhang, W., Yang, F., Brown, D.E., Ren, Y., Lee, S., Zeng, D., Gao, Q., Zhang, X.: Versatile nickel-tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green Chem. 18, 3949–3955 (2016)

    Article  Google Scholar 

  12. Liu, H., Wang, X., Du, C., Sun, D., Meng, X.: Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst. Catal. Commun. 77, 47–51 (2016)

    Article  Google Scholar 

  13. Sun, R., Wang, T., Zheng, M., Deng, W., Pang, J., Wang, A., Wang, X., Zhang, T.: Versatile Nickel–Lanthanum (III) catalyst for direct conversion of cellulose to glycols. ACS Catal. 5, 874–883 (2015)

    Article  Google Scholar 

  14. Pang, J., Zheng, M., Sun, R., Song, L., Wang, A., Wang, X., Zhang, T.: Catalytic conversion of cellulosic biomass to ethylene glycol: effects of inorganic impurities in biomass. Bioresour. Technol. 175, 424–429 (2015)

    Article  Google Scholar 

  15. Pang, J., Zheng, M., Wang, A., Zhang, T.: Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind. Eng. Chem. Res. 50, 6601–6608 (2011)

    Article  Google Scholar 

  16. Miao, G., Wang, C.C., Wang, J.J., Tan, Z.C., Wang, L., Liu, J.L., Kong, L.Z., Sun, Y.H.: Efficient one-pot production of 1,2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chem. 17, 2538–2544 (2015)

    Article  Google Scholar 

  17. Fabičovicová, K., Lucas, M., Claus, P.: From microcrystalline cellulose to hard- and softwood-based feedstocks: their hydrogenolysis to polyols over a highly efficient ruthenium-tungsten catalyst. Green Chem. 17, 3075–3083 (2015)

    Article  Google Scholar 

  18. Pang, J., Zheng, M., Wang, A., Sun, R., Wang, H., Jiang, Y., Zhang, T.: Catalytic conversion of concentrated miscanthus in water for ethylene glycol production. AIChE J. 60, 2254–2262 (2014)

    Article  Google Scholar 

  19. Zhou, L., Pang, J., Wang, A., Zhang, T.: Catalytic conversion of Jerusalem artichoke to ethylene glycol over a combined catalyst of WO3 and Raney Ni. Chin. J. Catal. 2013, 2041–2046 (2013)

    Article  Google Scholar 

  20. Pattiya, A., Suttibak, S.: Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J. Anal. Appl. Pyrol. 95, 227–235 (2012)

    Article  Google Scholar 

  21. Van Soest, P.J.: Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Anal. Chem. 46, 829–835 (1963)

    Google Scholar 

  22. Kataoka, Y., Kondo, T.: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31, 760–764 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project of Guangzhou City (No. 201607020025), the National Basic Research Program of China (No. 2013CB228101), the Fundamental Research Funds for the Central Universities (No. 2015ZZ136), and the State Key Laboratory of Pulp and Paper Engineering (No. 2015QN02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubin Wu or Gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wu, S., Yang, H. et al. Catalytic Conversion of Cassava Residues to Ethylene Glycol Via a One-Pot Hydrothermal Reaction. Waste Biomass Valor 8, 2443–2450 (2017). https://doi.org/10.1007/s12649-016-9706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9706-y

Keywords

Navigation