Skip to main content
Log in

Production of Trichoderma Reesei RUT C-30 Lignocellulolytic Enzymes Using Paper Sludge as Fermentation Substrate: An Approach for On-Site Manufacturing of Enzymes for Biorefineries

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Different types of pulp and paper sludge were used as raw materials for the production of a cocktail of lignocellulolytic enzymes of Trichoderma reesei RUT C-30 (T. reesei RUT C-30). The fungus were grown in pellets to produce cellulases (carbomethylcellulase, β-glucosidase) and hemicellulases (xylanase, β-xylosidase) in three types of sludge: primary (PS), secondary (SS) and mixed sludge (MS). The highest carbomethylcellulase activities obtained after 7 days of fermentation were 7.3, 4.8, and 1.5 IU/ml in MS, SS, and PS, respectively. Sludge modification such as the mixing SS and PS at 1:1 (v/v) ratio, the addition of ammonium sulfate as an inorganic nitrogen source, and the increase of the solids content were shown to improve enzyme production. The crude enzyme mixture obtained from the sludge samples showed a synergistic effect to hydrolyze various biomasses into monosugars. The tested biomasses included highly purified CMC, xylan from birch wood and lignocellulosic materials (corn stover and primary pulp and paper sludge). The addition of a surfactant (polysorbate 20) to the enzyme cocktail enhanced the saccharification efficiency of the sludge, in particular the hydrolysis of the corn stover which contains lignin. The obtained results contribute to the assessment of the feasibility of on-site low cost enzyme production at paper mills generating the sludge, or for neighboring or local biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banerjee, G., Scott-Craig, J.S., Walton, J.D.: Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res. 3, 82–92 (2010)

    Article  Google Scholar 

  2. Kovács, K., Szakacs, G., Zacchi, G.: Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour. Technol. 100, 1350–1357 (2009)

    Article  Google Scholar 

  3. Seidl, V., Seiboth, B.: Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels 1(2), 343–354 (2010)

    Article  Google Scholar 

  4. Sipos, B., Benkő, Z., Dienes, D., Réczey, K., Viikari, L., Siika-aho, M.: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl. Biochem. Biotechnol. 161, 347–364 (2010)

    Article  Google Scholar 

  5. Barta, Z., Kovacs, K., Reczey, K., Zacchi, G.: Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res. (2010). doi:10.4061/2010/734182

    Google Scholar 

  6. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., Viikari, L.: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process. Biochem. 40, 3519–3525 (2005)

    Article  Google Scholar 

  7. Kazi, F.K., et al.: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89(1), 20–28 (2010)

    Article  Google Scholar 

  8. Wang, W., Kang, L., Lee, Y.Y.: Production of cellulase from Kraft paper mill sludge by Trichoderma reesei Rut C-30. Appl. Biochem. Biotechnol. 161, 382–394 (2010)

    Article  Google Scholar 

  9. Wen, Z., Liao, W., Chen, S.: Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96, 491–499 (2005)

    Article  Google Scholar 

  10. Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R.M., Steinmüller, H.: The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl. Microbiol. Biotechnol. 26, 485–494 (1987)

    Article  Google Scholar 

  11. Shin, C.S., Lee, J.P., Lee, J.S., Park, S.C.: Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. Appl. Biochem. Biotechnol. 84–86, 237–245 (2000)

    Article  Google Scholar 

  12. Lane J.: POET, DSM form landmark cellulosic ethanol joint venture. Biofuels Digest 2012. http://www.biofuelsdigest.com/bdigest/2012/01/24/poet-dsm-formlandmark-cellulosic-ethanol-joint-venture/ (2007), 1 Oct, 2012

  13. Lecault, V., Patel, N., Thibault, J.: An image analysis technique to estimate the cell density and biomass concentration of Trichoderma reesei. Lett. Appl. Microbiol. 48(4), 402–407 (2009)

    Article  Google Scholar 

  14. Reddy, C.A., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R.: Methods for general and molecular microbiology. ASM Press, Washington (2007)

    Google Scholar 

  15. APHA, AWWA, WPCF.: Standard Methods for Examination of Water and Wastewaters. 20th edition American public health association, Washington, US. Section 2540B, p 216–218 (1999)

  16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. 2008. (National Renewable Energy Laboratory Technical Report NREL/TP-510-42618)

  17. Ghose, T.K., IUPAC (International union of pure and applied Chemistry): Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  18. Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23(3), 257–270 (1992)

    Article  Google Scholar 

  19. Ghose, T.K., Bisaria, V.S., IUPAC (International union of pure and applied Chemistry): Measurement of hemicellulase activities. Part 1: xylanases. Pure AppI. Chem. 59(12), 1739–1752 (1987)

    Article  Google Scholar 

  20. Hägerdal, Bärbel, Harris, H., Kendall Pye, E.: Association of β-glucosidase with intact cells of Thermoactinomyces. Biotechnol. Bioeng. 21(3), 345–355 (1979)

    Article  Google Scholar 

  21. Selig, M., Weiss, N., Ji, Y.: Enzymatic saccharification of lignocellulosic biomass: laboratory analytical procedure (LAP), Issue Date, 3/21/2008. National Renewable Energy Laboratory, (2008)

  22. Papagianni, M.: Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22, 189–259 (2004)

    Article  Google Scholar 

  23. Yu, L., Chao, Y., Wensel, P., Chen, S.: Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol. Bioeng. 109(7), 1755–1768 (2012)

    Article  Google Scholar 

  24. Wang, Wei, Kang, Li, Lee, Yoon Y.: Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl. Biochem. Biotechnol. 161(1-8), 382–394 (2010)

    Article  Google Scholar 

  25. Knob, A., Terrasan, C.R.F., Carmona, E.C.: β-Xylosidases from filamentous fungi: an overview. World J. Microbiol. Biotechnol. 26, 389–407 (2010)

    Article  Google Scholar 

  26. Vidyarthi, A.S., Tyagi, R.D., Valero, J.R., Surampalli, R.Y.: Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as a raw material. Water Res. 36(19), 4850–4860 (2002)

    Article  Google Scholar 

  27. Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y.: Sludge based Bacillus thuringiensis biopesticides: viscosity impacts. Water Res. 39(13), 3001–3011 (2005)

    Article  Google Scholar 

  28. Haab, D., Hagspiel, K., Szakmary, K., Kucibek, C.P.: Formation of the extracellular proteases from Trichoderma reesei QM 94414 involved in cellulase degradation. J. Biotechnol. 16, 187–198 (1990)

    Article  Google Scholar 

  29. Fan, Z., Lynd, L.R.: Conversion of paper sludge to ethanol, II: process design and economic analysis. Bioprocess Biosyst. Eng. 30, 35–45 (2007)

    Article  Google Scholar 

  30. Alkasrawi, M., et al.: The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme and Microbial Technology. 33, 71–78 (2003)

    Article  Google Scholar 

  31. Kristensen, J.B., Börjesson, J., Bruun, M.H., Tjerneld, F., Jørgensen, H.: Use of surface active additives in enzymatic hydrolysis of wheat straw lignocelluloses. Enzyme Microbial Technol. 40, 888–895 (2007)

    Article  Google Scholar 

  32. Eriksson, T., Börjesson, J., Tjerneld, F.: Mechanism of surfactant effect in enzymatic hydrolysis of lignocelluloses. Enzyme Microbial Technol. 31(3), 353–364 (2002)

    Article  Google Scholar 

  33. Zhang, S., Yixiang, X.Y., Hanna, M.A.: Pretreatment of corn stover with twin-screw extrusion followed by enzymatic saccharification. Appl. Biochem. Biotechnol. 166, 458–469 (2012)

    Article  Google Scholar 

  34. Karunanithy, C., Muthukumarappan, K.: Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl. Biochem. Biotechnol. 162(1), 264–279 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (Grant No. 371821). The views and opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Barnabé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T.T., Pham, T.T.H., Adjallé, K. et al. Production of Trichoderma Reesei RUT C-30 Lignocellulolytic Enzymes Using Paper Sludge as Fermentation Substrate: An Approach for On-Site Manufacturing of Enzymes for Biorefineries. Waste Biomass Valor 8, 1081–1088 (2017). https://doi.org/10.1007/s12649-016-9686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9686-y

Keywords

Navigation