Waste and Biomass Valorization

, Volume 8, Issue 4, pp 1081–1088 | Cite as

Production of Trichoderma Reesei RUT C-30 Lignocellulolytic Enzymes Using Paper Sludge as Fermentation Substrate: An Approach for On-Site Manufacturing of Enzymes for Biorefineries

  • Thanh Tung Lai
  • Thi Thanh Ha Pham
  • Kokou Adjallé
  • Daniel Montplaisir
  • François Brouillette
  • Simon BarnabéEmail author
Original Paper


Different types of pulp and paper sludge were used as raw materials for the production of a cocktail of lignocellulolytic enzymes of Trichoderma reesei RUT C-30 (T. reesei RUT C-30). The fungus were grown in pellets to produce cellulases (carbomethylcellulase, β-glucosidase) and hemicellulases (xylanase, β-xylosidase) in three types of sludge: primary (PS), secondary (SS) and mixed sludge (MS). The highest carbomethylcellulase activities obtained after 7 days of fermentation were 7.3, 4.8, and 1.5 IU/ml in MS, SS, and PS, respectively. Sludge modification such as the mixing SS and PS at 1:1 (v/v) ratio, the addition of ammonium sulfate as an inorganic nitrogen source, and the increase of the solids content were shown to improve enzyme production. The crude enzyme mixture obtained from the sludge samples showed a synergistic effect to hydrolyze various biomasses into monosugars. The tested biomasses included highly purified CMC, xylan from birch wood and lignocellulosic materials (corn stover and primary pulp and paper sludge). The addition of a surfactant (polysorbate 20) to the enzyme cocktail enhanced the saccharification efficiency of the sludge, in particular the hydrolysis of the corn stover which contains lignin. The obtained results contribute to the assessment of the feasibility of on-site low cost enzyme production at paper mills generating the sludge, or for neighboring or local biorefineries.


Cellulase Enzyme On-site manufacturing Paper sludge Lignocellulosic biomass Trichoderma reesei Xylanase 



The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (Grant No. 371821). The views and opinions expressed in this article are those of the authors.


  1. 1.
    Banerjee, G., Scott-Craig, J.S., Walton, J.D.: Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res. 3, 82–92 (2010)CrossRefGoogle Scholar
  2. 2.
    Kovács, K., Szakacs, G., Zacchi, G.: Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour. Technol. 100, 1350–1357 (2009)CrossRefGoogle Scholar
  3. 3.
    Seidl, V., Seiboth, B.: Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels 1(2), 343–354 (2010)CrossRefGoogle Scholar
  4. 4.
    Sipos, B., Benkő, Z., Dienes, D., Réczey, K., Viikari, L., Siika-aho, M.: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl. Biochem. Biotechnol. 161, 347–364 (2010)CrossRefGoogle Scholar
  5. 5.
    Barta, Z., Kovacs, K., Reczey, K., Zacchi, G.: Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res. (2010). doi: 10.4061/2010/734182 Google Scholar
  6. 6.
    Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., Viikari, L.: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process. Biochem. 40, 3519–3525 (2005)CrossRefGoogle Scholar
  7. 7.
    Kazi, F.K., et al.: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89(1), 20–28 (2010)CrossRefGoogle Scholar
  8. 8.
    Wang, W., Kang, L., Lee, Y.Y.: Production of cellulase from Kraft paper mill sludge by Trichoderma reesei Rut C-30. Appl. Biochem. Biotechnol. 161, 382–394 (2010)CrossRefGoogle Scholar
  9. 9.
    Wen, Z., Liao, W., Chen, S.: Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96, 491–499 (2005)CrossRefGoogle Scholar
  10. 10.
    Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R.M., Steinmüller, H.: The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl. Microbiol. Biotechnol. 26, 485–494 (1987)CrossRefGoogle Scholar
  11. 11.
    Shin, C.S., Lee, J.P., Lee, J.S., Park, S.C.: Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. Appl. Biochem. Biotechnol. 84–86, 237–245 (2000)CrossRefGoogle Scholar
  12. 12.
    Lane J.: POET, DSM form landmark cellulosic ethanol joint venture. Biofuels Digest 2012. (2007), 1 Oct, 2012
  13. 13.
    Lecault, V., Patel, N., Thibault, J.: An image analysis technique to estimate the cell density and biomass concentration of Trichoderma reesei. Lett. Appl. Microbiol. 48(4), 402–407 (2009)CrossRefGoogle Scholar
  14. 14.
    Reddy, C.A., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R.: Methods for general and molecular microbiology. ASM Press, Washington (2007)Google Scholar
  15. 15.
    APHA, AWWA, WPCF.: Standard Methods for Examination of Water and Wastewaters. 20th edition American public health association, Washington, US. Section 2540B, p 216–218 (1999)Google Scholar
  16. 16.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. 2008. (National Renewable Energy Laboratory Technical Report NREL/TP-510-42618)Google Scholar
  17. 17.
    Ghose, T.K., IUPAC (International union of pure and applied Chemistry): Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  18. 18.
    Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23(3), 257–270 (1992)CrossRefGoogle Scholar
  19. 19.
    Ghose, T.K., Bisaria, V.S., IUPAC (International union of pure and applied Chemistry): Measurement of hemicellulase activities. Part 1: xylanases. Pure AppI. Chem. 59(12), 1739–1752 (1987)CrossRefGoogle Scholar
  20. 20.
    Hägerdal, Bärbel, Harris, H., Kendall Pye, E.: Association of β-glucosidase with intact cells of Thermoactinomyces. Biotechnol. Bioeng. 21(3), 345–355 (1979)CrossRefGoogle Scholar
  21. 21.
    Selig, M., Weiss, N., Ji, Y.: Enzymatic saccharification of lignocellulosic biomass: laboratory analytical procedure (LAP), Issue Date, 3/21/2008. National Renewable Energy Laboratory, (2008)Google Scholar
  22. 22.
    Papagianni, M.: Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22, 189–259 (2004)CrossRefGoogle Scholar
  23. 23.
    Yu, L., Chao, Y., Wensel, P., Chen, S.: Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol. Bioeng. 109(7), 1755–1768 (2012)CrossRefGoogle Scholar
  24. 24.
    Wang, Wei, Kang, Li, Lee, Yoon Y.: Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl. Biochem. Biotechnol. 161(1-8), 382–394 (2010)CrossRefGoogle Scholar
  25. 25.
    Knob, A., Terrasan, C.R.F., Carmona, E.C.: β-Xylosidases from filamentous fungi: an overview. World J. Microbiol. Biotechnol. 26, 389–407 (2010)CrossRefGoogle Scholar
  26. 26.
    Vidyarthi, A.S., Tyagi, R.D., Valero, J.R., Surampalli, R.Y.: Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as a raw material. Water Res. 36(19), 4850–4860 (2002)CrossRefGoogle Scholar
  27. 27.
    Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y.: Sludge based Bacillus thuringiensis biopesticides: viscosity impacts. Water Res. 39(13), 3001–3011 (2005)CrossRefGoogle Scholar
  28. 28.
    Haab, D., Hagspiel, K., Szakmary, K., Kucibek, C.P.: Formation of the extracellular proteases from Trichoderma reesei QM 94414 involved in cellulase degradation. J. Biotechnol. 16, 187–198 (1990)CrossRefGoogle Scholar
  29. 29.
    Fan, Z., Lynd, L.R.: Conversion of paper sludge to ethanol, II: process design and economic analysis. Bioprocess Biosyst. Eng. 30, 35–45 (2007)CrossRefGoogle Scholar
  30. 30.
    Alkasrawi, M., et al.: The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme and Microbial Technology. 33, 71–78 (2003)CrossRefGoogle Scholar
  31. 31.
    Kristensen, J.B., Börjesson, J., Bruun, M.H., Tjerneld, F., Jørgensen, H.: Use of surface active additives in enzymatic hydrolysis of wheat straw lignocelluloses. Enzyme Microbial Technol. 40, 888–895 (2007)CrossRefGoogle Scholar
  32. 32.
    Eriksson, T., Börjesson, J., Tjerneld, F.: Mechanism of surfactant effect in enzymatic hydrolysis of lignocelluloses. Enzyme Microbial Technol. 31(3), 353–364 (2002)CrossRefGoogle Scholar
  33. 33.
    Zhang, S., Yixiang, X.Y., Hanna, M.A.: Pretreatment of corn stover with twin-screw extrusion followed by enzymatic saccharification. Appl. Biochem. Biotechnol. 166, 458–469 (2012)CrossRefGoogle Scholar
  34. 34.
    Karunanithy, C., Muthukumarappan, K.: Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl. Biochem. Biotechnol. 162(1), 264–279 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Thanh Tung Lai
    • 1
  • Thi Thanh Ha Pham
    • 1
  • Kokou Adjallé
    • 1
  • Daniel Montplaisir
    • 1
  • François Brouillette
    • 1
  • Simon Barnabé
    • 1
    Email author
  1. 1.Lignocellulosic Materials Research CentreUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations