Skip to main content
Log in

Maximized Utilization of Raw Rice Bran in Microbial Oils Production and Recovery of Active Compounds: A proof of concept

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is currently considered as one of the promising feedstock for petroleum diesel alternative, together with single cell oils. Rice bran, which is a very abundant waste especially in Asia, could be utilized better than just as cattle feed. Dilute acid hydrolysis using 3 % H2SO4 at 90 °C was found to be able to maximize the sugar produced from raw rice bran without prior oil extraction (TRS = 54.91 g/L). Activated carbon was used for removing most furan inhibitors from rice bran hydrolysate (RBH) after hydrolysis and resulted in a TRS of 50.10 g/L. RBH was then neutralized using calcium hydroxide and diluted to a TRS concentration of 30 g/L. RBH was used to culture Yarrowia lipolytica PO1g, resulting in a comparable results of lipid content to that cultured in complex medium (YPD). The highest crude lipid content obtained from Y. lipolytica cultivated in RBH with addition of 10 g/L yeast extract was 23.94 % (biomass = 14.3 g/L), while the optimum result obtained using YPD was at a C/N ratio of 9.5 (biomass reached 14.7 g/L) and crude lipid content was 28.42 %. Furthermore, lipid and γ-oryzanol can be recovered after dilute acid hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BF3 :

Boron trifluoride

FA:

Fatty acids

FFA:

Free fatty acids

C/N:

Carbon to nitrogen

YPD:

Yeast extract-peptone-dextrose

RB:

Rice bran

DRB:

Defatted rice bran

URBH:

Unsieved rice bran hydrolysate

SRBH:

Sieved rice bran hydrolysate

UDRBH:

Unsieved defatted rice bran hydrolysate

HMF:

Hydroxymethylfurfural

HPLC:

High performance liquid chromatography

TRS:

Total reducing sugars

HTGC:

High Temperature Gas Chromatography

References

  1. Pinzi, S., Leiva-Candia, D., López-García, I., Redel-Macías, M.D., Dorado, M.P.: Latest trends in feedstocks for biodiesel production. Biofuels Bioprod. Bioref. (2013). doi:10.1002/bbb.1435

    Google Scholar 

  2. Arous, F., Frikha, F., Triantaphyllidou, I.-E., Aggelis, G., Nasri, M., Mechichi, T.: Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. J. Clean. Prod. (2016). doi:10.1016/j.jclepro.2016.1006.1040

    Google Scholar 

  3. Economou, C.N., Makri, A., Aggelis, G., Pavlou, S., Vayenas, D.V.: Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour. Technol. 101, 1385–1388 (2010)

    Article  Google Scholar 

  4. Economou, C.N., Aggelis, G., Pavlou, S., Vayenas, D.V.: Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol. Bioeng. 108(5), 1049–1055 (2011)

    Article  Google Scholar 

  5. Huang, C., Wu, H., Li, R.-F., Zong, M.-H.: Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol. 29(3), 372–378 (2012). doi:10.1016/j.nbt.2011.03.008

    Article  Google Scholar 

  6. Tsigie, Y.A., Wang, C.-Y., Truong, C.-T., Ju, Y.-H.: Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour. Technol. 102(19), 9216–9222 (2011). doi:10.1016/j.biortech.2011.06.047

    Article  Google Scholar 

  7. IRRI: World Rice Statistics Online Query Facility. ricestat.irri.org.8080/wrs2/entrypoint.htm (1961–2015). Accessed Feb 25 2016

  8. Kahlon, T.S.: Rice bran: production, composition, functionality and food applications, physiological benefits. In: Cho, S.S., Samuel, P. (eds.) Fiber Ingredients: Food Applications and Health Benefits, pp. 305–318. CRC Press, Taylor & Francis, Routledge (2009)

    Google Scholar 

  9. Muthayya, S., Sugimoto, J.D., Montgomery, S., Maberly, G.F.: An overview of global rice production, supply, trade, and consumption. Ann. N.Y. Acad. Sci. 1324, 7–14 (2014)

    Article  Google Scholar 

  10. GRiSP: Rice almanac. In: Source Book for One of the Most Important Economic Activities on Earth. International Rice Research Institute, Los Baños (Philippines) (2013)

  11. Economou, C.N., Aggelis, G., Pavlou, S., Vayenas, D.V.: Single cell oil production from rice hulls hydrolysate. Bioresour. Technol. 102, 9737–9742 (2011)

    Article  Google Scholar 

  12. Esa, N.M., Ling, T.B., Peng, L.S.: By-products of rice processing: an overview of health benefits and applications. J. Rice Res. 1(1), 1–11 (2013)

    Google Scholar 

  13. Ju, Y.-H., Zullaikah, S.: Effect of acid-catalyzed methanolysis on the bioactive components of rice bran oil. J. Taiwan Inst. Chem. Eng. 44(6), 924–928 (2013). doi:10.1016/j.jtice.2013.03.006

    Article  Google Scholar 

  14. Shiu, P.-J., Gunawan, S., Hsieh, W.-H., Kasim, N.S., Ju, Y.-H.: Biodiesel production from rice bran by a two-step in situ process. Biores. Technol. 101(3), 984–989 (2010). doi:10.1016/j.biortech.2009.09.011

    Article  Google Scholar 

  15. NutritionValue: Rice bran, crude Nutrition Facts. http://www.nutritionvalue.org/Rice_bran,_crude_nutritional_value.html (2016). Accessed Feb 17 2016

  16. Bandyopadhyay, K., Misra, G., Ghosh, S.: Preparation and characterisation of protein hydrolystaes from indian defatted rice bran meal. J. Oleo Sci. 57(1), 47–52 (2008)

    Article  Google Scholar 

  17. Tang, S., Hettiarachchy, N.S., Horax, R., Eswaranandam, S.: Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes. J. Food Chem. Toxicol. 68(1), 152–157 (2003)

    Google Scholar 

  18. Silpradit, K., Tadakittasarn, S., Rimkeeree, H., Winitchai, S., Haruthaithanasan, V.: Optimization of rice bran protein hydrolysate production using alcalase Asian. J. Food Agro-Ind. 3(02), 221–231 (2010)

    Google Scholar 

  19. Yun, J.-S., Wee, Y.-J., Kim, J.-N., Ryu, H.-W.: Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol. Lett. 26, 1613–1616 (2004)

    Article  Google Scholar 

  20. Taniguchi, M., Hoshina, M., Tanabe, S., Higuchi, Y., Sakai, K., Ohtsubo, S., Hoshino, K., Tanaka, T.: Production of L-lactic acid by simultaneous saccharification and fermentation using unsterilized defatted rice bran as a carbon source and nutrient components. Food Sci. Technol. Res. 11(4), 401–406 (2005)

    Article  Google Scholar 

  21. Tanaka, T., Hoshina, M., Tanabe, S., Sakai, K., Ohtsubo, S., Taniguchi, M.: Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97, 211–217 (2006)

    Article  Google Scholar 

  22. Li, Z., Lu, J., Yang, Z., Han, L., Tan, T.: Utilization of white rice bran for production of L-lactic acid. Biomass Bioenergy 39, 53–58 (2012)

    Article  Google Scholar 

  23. Wang, Y., Yang, Z., Qin, P., Tan, T.: Fermentative L-(+)-lactic acid production from defatted rice bran. RSC Adv. 4, 8907–8913 (2014)

    Article  Google Scholar 

  24. Tsigie, Y.A., Wang, C.-Y., Kasim, N.S., Diem, Q.-D., Huynh, L.-H., Ho, Q.-P., Truong, C.-T., Ju, Y.-H.: Oil production from Yarrowia lipolytica PO1g using rice bran hydrolysate. J. Biomed. Biotechnol. 10, 1–10 (2012). doi:10.1155/2012/378384

    Article  Google Scholar 

  25. Oh, Y.H., Lee, S.H., Jang, Y.-A., Choi, J.W., Hong, K.S., Yu, J.H., Shin, J., Song, B.K., Mastan, S.G., David, Y., Baylon, M.G., Lee, S.Y., Park, S.J.: Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour. Technol. 181, 283–290 (2015). doi:10.1016/j.biortech.2015.01.075

    Article  Google Scholar 

  26. Huang, T.-Y., Duan, K.-J., Huang, S.-Y., Chen, C.W.: Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 33(8), 701–706 (2006). doi:10.1007/s10295-006-0098-z

    Article  Google Scholar 

  27. Al-Shorgani, N.K.N., Kalil, M.S., Yusoff, W.M.W.: Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 35, 817–826 (2012)

    Article  Google Scholar 

  28. Lee, J., Seo, E., Kweon, D.-H., Park, K., Jin, Y.-S.: Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. J. Microbiol. Biotechnol. 19(5), 482–490 (2009)

    Article  Google Scholar 

  29. Watanabe, M., Takahashi, M., Sasano, K., Kashiwamura, T., Ozaki, Y., Tsuiki, T., Hidaka, H., Kanemoto, S.: Bioethanol production from rice washing drainage and rice bran. J. Biosci. Bioeng. 108(6), 524–526 (2009)

    Article  Google Scholar 

  30. Todhanakasem, T., Areerat, K., Thanonkeo, P., Klinjapoand, R., Young, G.M.: The composition of rice bran hydrolysate and its possibility to use in the ethanol production by Zymomonas Mobilis Biofilm. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 6(12), 1126–1130 (2012)

    Google Scholar 

  31. Anwar, Z., Gulfraz, M., Irshad, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7(2), 163–173 (2014). doi:10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  32. Chaturvedi, V., Verma, P.: An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3. Biotech 3(5), 415–431 (2013). doi:10.1007/s13205-013-0167-8

    Google Scholar 

  33. Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M., Ardjmand, M.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013). doi:10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  34. Li, Z., Deng, L., Lu, J., Guo, X., Yang, Z., Tan, T.: Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99–125. Chin. J. Chem. Eng. 18(5), 870–875 (2010). doi:10.1016/S1004-9541(09)60141-5

    Article  Google Scholar 

  35. Todhanakasem, T., Sangsutthiseree, A., Areerat, K., Young, G.M., Thanonkeo, P.: Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol. 31(5), 451–459 (2014)

    Article  Google Scholar 

  36. Heuzé, V., Tran, G.: Rice bran and other rice by-products. Feedipedia. http://feedipedia.org/node/750 (2015). Accessed Feb 18 2016

  37. Official Methods and Recommended Practices of the American Oil Chemists’ Society. In: Firestone, D. (ed.). The Society (1989)

  38. Go, A.W., Liu, Y.T., Hsu, J.Y.: Applicability of subcritical water treatment on oil seeds to enhance extractable lipid. Bioenergy Res. 7(2), 711–719 (2013)

    Article  Google Scholar 

  39. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  40. Verardi, A., Bari, I.D., Ricca, E., Calabrò, V.: Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Lima, P.M.A.P. (ed.). InTech Open (2012)

  41. Fabian, C., Ayucitra, A., Ismadji, S., Ju, Y.-H.: Isolation and characterization of starch from defatted rice bran. J. Taiwan Inst. Chem Eng. 42(1), 86–91 (2011). doi:10.1016/j.jtice.2010.03.013

    Article  Google Scholar 

  42. Go, A.W., Conag, A.T., Cuizon, D.E.S.: Recovery of sugars and lipids from spent coffee grounds: a new approach. Waste Biomass Valoriz. (2016). doi:10.1007/s12649-016-9527-z

    Google Scholar 

  43. Scientific, T.: Laboratory Preparations/Biological Extracts (2016)

  44. Smith, E.A.: Fractionation and Characterisation of a commercial yeast extract to facilitate acceleration of yogurt fermentation. University of the Free State (2013)

  45. Nicaud, J.-M., Madzak, C., Broek, P.V.D., Gysler, C., Duboc, P., Niederberger, P., Gaillardin, C.: Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res. 2, 371–379 (2002)

    Google Scholar 

  46. Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., Alper, H.S.: Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5(3131), 1–10 (2014)

    Google Scholar 

  47. Papanikolaou, S., Fakas, S., Fick, M., Chevalot, I., Galiotou-Panayotou, M., Komaitis, M., Marc, I., Aggelis, G.: Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32(1), 60–71 (2008). doi:10.1016/j.biombioe.2007.06.007

    Article  Google Scholar 

  48. Poli, J.S., da Silva, M.A.N., Siqueira, E.P., Pasa, V.M.D., Rosa, C.A., Valente, P.: Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresour. Technol. 161, 320–326 (2014). doi:10.1016/j.biortech.2014.03.083

    Article  Google Scholar 

  49. Sil, J., Das, S., Oliveira, R.G., Amaral, P.F.F., Coelho, M.A.Z.: Screening six potential Yarrowia lipolytica strains for best lipid, citric acid, biosurfactant and lipase production. Paper presented at the 2013 2nd International Conference on Environment, Energy and Biotechnology, Singapore

  50. Papanikolaou, S., Beopoulos, A., Koletti, A., Thevanieau, F., Koutinas, A.A., Nicaud, J.-M., Aggelis, G.: Importance of the methyl citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J. Biotechnol. 168, 303–314 (2013)

    Article  Google Scholar 

  51. Dulermo, T., Nicaud, J.-M.: Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab. Eng. 13(5), 482–491 (2011). doi:10.1016/j.ymben.2011.05.002

    Article  Google Scholar 

  52. Ratledge, C., Wynn, J.: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–51 (2002)

    Article  Google Scholar 

  53. Papanikolaou, S., Chevalot, I., Galiotou-Panayotou, M., Komaitis, M., Marc, I., Aggelis, G.: Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron. J. Biotechnol. 10(3), 425–435 (2007)

    Article  Google Scholar 

  54. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.-L., Molina-Jouve, C., Nicaud, J.-M.: Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48(6), 375–387 (2009). doi:10.1016/j.plipres.2009.08.005

    Article  Google Scholar 

  55. Nicaud, J.-M.: Yarrowia lipolytica. Yeast 29(10), 409–418 (2012). doi:10.1002/yea.2921

    Article  Google Scholar 

  56. Hui, Z.Y.: Effects of over-expressing LRO1 gene in Yarrowia lipolytica P01g on enhancing its growth rate and lipid production. M.Sc Thesis, National Taiwan University of Science and Technology (2015)

  57. Ratledge, C.: The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol. Lett. 36, 1557–1568 (2014)

    Article  Google Scholar 

  58. Macool, D.J., Xue, Z., Zhu, Q.Q.: Expression of cytosolic malic enzyme in transgenic Yarrowia to increase lipid production. US Patent

  59. Hong, S.P., Xue, Z., Zhu, Q.Q.: Pentose phosphate pathway upregulation to increase production of non-native products of interest in transgenic microorganisms. US Patent

  60. Beopoulos, A., Mrozova, Z., Thevenieau, F., Dall, M.-T.L., Hapala, I., Papanikolaou, S., Chardot, T., Nicaud, J.-M.: Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74(24), 7779–7789 (2008)

    Article  Google Scholar 

  61. Tai, M., Stephanopoulos, G.: Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013)

    Article  Google Scholar 

  62. Özgül-Yücel, S., Türkay, S.: Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J. Am. Oil Soc. 79, 611–614 (2002)

    Article  Google Scholar 

  63. Ryan, E.P.: Bioactive food components and health properties of rice bran. JAVMA 238(5), 593–600 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology (MOST 103-2221-E-011-148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryadi Ismadji.

Ethics declarations

Conflict of interest

The authors declare no financial and conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutanto, S., Go, A.W., Chen, KH. et al. Maximized Utilization of Raw Rice Bran in Microbial Oils Production and Recovery of Active Compounds: A proof of concept. Waste Biomass Valor 8, 1067–1080 (2017). https://doi.org/10.1007/s12649-016-9685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9685-z

Keywords

Navigation