Waste and Biomass Valorization

, Volume 8, Issue 5, pp 1629–1648 | Cite as

Review and Assessment of Waste and Wastewater Treatment from Fruits and Vegetables Processing Industries in Greece

  • K. Valta
  • P. Damala
  • V. Panaretou
  • E. Orli
  • K. Moustakas
  • M. Loizidou
Original Paper

Abstract

The global fruit and vegetable processing industry is growing steadily due to the population growth, the adopted healthier eating patterns by consumers, and the advancements in supply chain management and production processes. The present study is focused on the investigation of the waste and wastewater treatment practices taking place in the Greek sector of processing and preserving fruit and vegetables through a detailed examination of eleven industrial units related to this specific industrial sector. Among these units, two were associated with tomato processing and nine with the processing of peaches and apricots. Moreover, aiming at adding value to the Greek fruits and vegetables processing sector, waste and byproducts valorisation opportunities were identified through a comprehensive literature review. Based on the recording of the existing situation in Greece, it was observed that all industrial units operate biological wastewater treatment plants mainly applying the activated sludge process. Food industrial waste by-products derived from the operation of the units were mainly given as feed (e.g. the plant residues) or exploited for the production of energy (e.g. the fruit kernels). In addition, based on literature review, it was obvious that industrial food waste valorisation comprises a research area that has attracted great deal of attention over the last years resulting in significant advancements. Considering the above, in order to add value to the Greek fruits and vegetables processing industry, waste valorisation can be considered including technologies to recover valuable compounds. However, more efforts are needed to prove that such practices can work at a commercial level and that all operational and manufacturing issues have been carefully considered.

Keywords

Fruit and vegetable processing industry Tomato Peach Apricot Valorisation Wastewater Waste Greece 

References

  1. 1.
  2. 2.
    FoodDrinkEurope: Data & Trends of the European Food and Drink Industry. http://www.fooddrinkeurope.eu/uploads/publications_documents/Data_and_Trends_2014-20152.pdf (2014–2015). Accessed Jan 2016
  3. 3.
    FEIR (Foundation for Economic and Industrial Research) Study: The outlook in the manufacturing sector in Greece (2012). http://iobe.gr/docs/research/RES_05_F_02052012REP_GR.pdf
  4. 4.
    Valta, K., Damala, P., Orli, E., Papadaskalopoulou, C., Moustakas, K., Malamis, D., Loizidou, M.: Valorisation opportunities in the Greek slaughtering industry: current status and future potentials. Waste Biomass Valor. 6, 927–945 (2015). doi:10.1007/s12649-015-9368-1 CrossRefGoogle Scholar
  5. 5.
    Valta, K., Aggeli, E., Papadaskalopoulou, C., Panaretou, V., Sotiropoulos, A., Malamis, D., Moustakas, K., Haralambous, K.-J.: Adding value to olive oil production through waste and wastewater treatment and valorisation: the case of Greece. Waste Biomass Valor. 6, 913–925 (2015). doi:10.1007/s12649-015-9373-4 CrossRefGoogle Scholar
  6. 6.
    Valta, K., Kosanovic, T., Malamis, D., Moustakas, K., Loizidou, M.: Overview of water usage and wastewater management in the food and beverage industry. Desalin. Water Treat. 53, 3335–3347 (2015). doi:10.1080/19443994.2014.934100 CrossRefGoogle Scholar
  7. 7.
    Stajcic, S., Cetkovic, G., Canadanovic-Brunet, J., Djilas, S., Mandic, A., Cetojevic-Simin, D.: Tomato waste: carotenoids content, antioxidant and cell growth activities. Food Chem. 172, 225–232 (2015)CrossRefGoogle Scholar
  8. 8.
    Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., Karathanos, V.T.: Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 49, 213–216 (2012)CrossRefGoogle Scholar
  9. 9.
    Elbadrawy, E., Sello, A.: Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. (2011). doi:10.1016/j.arabjc.2011.11.011 Google Scholar
  10. 10.
    Herrera, P.G., Sánchez-Mata, M.C., Cámara, M.: Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innov. Food Sci. Emerg. Technol. 11, 707–711 (2010)CrossRefGoogle Scholar
  11. 11.
    Ćetković, G., Savatović, S., Čanadanović-Brunet, J., Djilas, S., Vulić, J., Mandić, A., Četojević-Simin, D.: Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem. 13, 938–945 (2012)Google Scholar
  12. 12.
    Oreopoulou, V., Winfried, R.: Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants and colorants. In: Utilization of by-products and treatment of waste in the food industry. Department Food Science and Human Nutrition, University of Iceland (2007)Google Scholar
  13. 13.
    Strati, I.F., Oreopoulou, V.: Recovery of carotenoids from tomato processing by-products—a review. Food Res. Int. 65, 311–321 (2014)CrossRefGoogle Scholar
  14. 14.
    Ranveer, R.C., Patil, S.N., Sahoo, A.K.: Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. 91, 370–375 (2013)CrossRefGoogle Scholar
  15. 15.
    Zuorro, A., Fidaleo, M., Lavecchia, R.: Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb. Technol. 49, 567–573 (2011)CrossRefGoogle Scholar
  16. 16.
    Silva, A.F., de Melo, M.M.R., Silva, C.M.: Supercritical solvent selection (CO2 versus ethane) and optimization of operating conditions of the extraction of lycopene from tomato residues: innovative analysis of extraction curves by a response surface methodology and cost of manufacturing hybrid approach. J. Supercrit. Fluids 95, 618–627 (2014)CrossRefGoogle Scholar
  17. 17.
    Lenucci, M.S., De Caroli, M., Marrese, P.P., Iurlaro, A., Rescio, L., Böhm, V., Dalessandro, G., Piro, G.: Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem. 170, 193–202 (2015)CrossRefGoogle Scholar
  18. 18.
    Perretti, G., Troilo, A., Bravi, E., Marconi, O., Galgano, F., Fantozzi, P.: Production of a lycopene-enriched fraction from tomato pomaceusing supercritical carbon dioxide. J. of Supercrit. Fluids 82, 177–182 (2013)CrossRefGoogle Scholar
  19. 19.
    Machmudah, S., Zakaria, Z., Winardi, S., Sasaki, M., Goto, M., Kusumoto, N., Hayakawa, K.: Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 108, 290–296 (2012)CrossRefGoogle Scholar
  20. 20.
    Nobre, B.P., Palavra, A.F., Pessoa, F.L.P., Mendes, R.L.: Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chem. 116, 680–685 (2009)CrossRefGoogle Scholar
  21. 21.
    Amiri-Rigi, A., Abbasi, S., Scanlon, M.G.: Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: optimization of enzymatic and ultrasound pre-treatments. Innov. Food Sci. Emerg. Technol. 35, 160–167 (2016)CrossRefGoogle Scholar
  22. 22.
    Ha, T.V.A., Kim, S., Choi, Y., Kwak, H.-S., Lee, S.J., Wen, J., Oey, I., Ko, S.: Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem. 178, 115–121 (2015)CrossRefGoogle Scholar
  23. 23.
    Ho, K.K.H.Y., Ferruzzi, M.G., Liceaga, A.M., San Martín-Gonzalez, M.F.: Microwave-assisted extraction of lycopene in tomato peels: effect of extraction conditions on all—trans and cis-isomer yields. LWT Food Sci. Technol. 62, 160–168 (2015)CrossRefGoogle Scholar
  24. 24.
    Luengo, E., Condón-Abanto, S., Condón, S., Άlvarez, I., Raso, J.: Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 136, 130–136 (2014)CrossRefGoogle Scholar
  25. 25.
    Kraiem, N., Lajili, M., Limousy, L., Said, R., Jeguirim, M.: Energy recovery from Tunisian agri-food wastes: evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 107, 409–418 (2016)CrossRefGoogle Scholar
  26. 26.
    Toscano, G., Pizzi, A., Pedretti, E.F., Rossini, G., Ciceri, G., Martignon, G., Duca, D.: Torrefaction of tomato industry residues. Fuel 143, 89–97 (2015)CrossRefGoogle Scholar
  27. 27.
    Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Pedretti, E.F., Riva, G.: Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass Bioenergy 51, 177–182 (2013)CrossRefGoogle Scholar
  28. 28.
    Encinar, J.M., González, J.F., Martínez, G.: Energetic use of the tomato plant waste. Fuel Process. Technol. 89, 1193–1200 (2008)CrossRefGoogle Scholar
  29. 29.
    Saygılı, H., Güzel, F.: High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J. Clean. Prod. 113, 995–1004 (2016)CrossRefGoogle Scholar
  30. 30.
    Saygılı, H., Güzel, F.: Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste. Ecotoxicol. Environ. Saf. 131, 22–29 (2016)CrossRefGoogle Scholar
  31. 31.
    Grassino, A.N., Halambek, J., Djakovic, S., Brncic, S.R., Dent, M., Grabari, Z.: Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 52, 265–274 (2016)CrossRefGoogle Scholar
  32. 32.
    Yargıç, A.S., Sahin, R.Z.Y., Ozbay, N., Onal, E.: Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88, 152–159 (2015)CrossRefGoogle Scholar
  33. 33.
    Achmon, Y., Harrold, D.R., Claypool, J.T., Stapleton, J.J., VanderGheynst, J.S., Simmons, C.W.: Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization. Waste Manag. 48, 156–164 (2016)CrossRefGoogle Scholar
  34. 34.
    Mokrani, A., Krisa, S., Cluzet, S., Da Costa, G., Temsamani, H., Renouf, E., Mérillon, J.-M., Madani, K., Mesnil, M., Monvoisin, A., Richard, T.: Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 202, 212–220 (2016)CrossRefGoogle Scholar
  35. 35.
    Liu, H., Cao, J., Jiang, W.: Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT Food Sci. Technol. 63, 1042–1048 (2015)CrossRefGoogle Scholar
  36. 36.
    Basto, G.J., Carvalho, C.W.P., Soares, A.G., Costa, H.T.G.B., Chávez, D.W.H., de Oliveira Godoy, R.L., Pacheco, S.: Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). LWT Food Sci. Technol. 69, 312–318 (2016)CrossRefGoogle Scholar
  37. 37.
    Vásquez-Villanueva, R., Marina, M.L., García, M.C.: Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: extraction and characterization of ACE-inhibitory peptides from peach stones. J. Funct. Foods 18, 137–146 (2015)CrossRefGoogle Scholar
  38. 38.
    Qian, H.F., Cui, S.W., Wang, Q., Wang, C., Zhou, H.M.: Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocoll. 25, 1285–1290 (2011)CrossRefGoogle Scholar
  39. 39.
    de Escalada Pla, M.F., González, P., Sette, P., Portillo, F., Rojas, A.M., Gerschenson, L.N.: Effect of processing on physico-chemical characteristics of dietary fibre concentrates obtained from peach (Prunus persica L.) peel and pulp. Food Res. Int. 49, 184–192 (2012)CrossRefGoogle Scholar
  40. 40.
    Zaghdoudi, K., Pontvianne, S., Framboisier, X., Achard, M., Kudaibergenova, R., Ayadi-Trabelsi, M., Kalthoum-cherif, J., Vanderesse, R., Frochot, C., Guiavarc’h, Y.: Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Food Chem. 184, 131–139 (2015)CrossRefGoogle Scholar
  41. 41.
    Gupta, A., Sharma, P.C.: Standardization of technology for extraction of wild apricot kernel oil at semi-pilot scale. Biol. Forum Int. J. 1(1), 51–64 (2009)Google Scholar
  42. 42.
    Mezzomo, N., Mileo, B.R., Friedrich, M.T., Martinez, J., Ferreira, S.R.S.: Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition. Bioresour. Technol. 101, 5622–5632 (2010)CrossRefGoogle Scholar
  43. 43.
    Adil, I.H., Cetin, H.E., Yener, M.E., Bayındırlı, A.: Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. J. Supercrit. Fluids 43, 55–63 (2007)CrossRefGoogle Scholar
  44. 44.
    Faravash, R.S., Ashtiani, F.Z.: The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. Int. J. Food Sci. Technol. 42, 1177–1187 (2006)CrossRefGoogle Scholar
  45. 45.
    Solís-Solís, H.M., Calderón-Santoyo, M., Schorr-Galindo, S., Luna-Solano, G., Ragazzo-Sánchez, J.A.: Characterization of aroma potential of apricot varieties using different extraction techniques. Food Chem. 105, 829–837 (2007)CrossRefGoogle Scholar
  46. 46.
    Fana, S., Liang, T., Yu, H., Bi, Q., Li, G., Wang, L.: Kernel characteristics, oil contents, fatty acid compositions and biodiesel properties in developing Siberian apricot (Prunus sibirica L.) seeds. Ind. Crops Prod. 89, 195–199 (2016)CrossRefGoogle Scholar
  47. 47.
    Demiral, I., Kul, S.C.: Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J. Anal. Appl. Pyrol. 107, 17–24 (2014)CrossRefGoogle Scholar
  48. 48.
    Rabaçal, M., Fernandes, U., Costa, M.: Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones. Renew. Energy 51, 220–226 (2013)CrossRefGoogle Scholar
  49. 49.
    Atimtay, A.T., Kaynak, B.: Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed. Fuel Process. Technol. 89, 183–197 (2008)CrossRefGoogle Scholar
  50. 50.
    De Menna, F., Vittuari, M., Molari, G.: Impact evaluation of integrated food-bioenergy systems: a comparative LCA of peach nectar. Biomass Bioenergy 73, 48–61 (2015)CrossRefGoogle Scholar
  51. 51.
    Li, K., Yang, W., Li, Z., Ji, W., Li, J., Zhang, P., Xiao, T.: Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. Int. Immunopharmacol. 34, 189–198 (2016)CrossRefGoogle Scholar
  52. 52.
    Noratto, G., Porter, W., Byrne, D., Cisneros-Zevallos, L.: Polyphenolics from peach (Prunus persica var. Rich Lady) inhibit tumor growth and metastasis of MDA-MB-435 breast cancer cells in vivo. J. Nutr. Biochem. 25, 796–800 (2014)CrossRefGoogle Scholar
  53. 53.
    Kono, R., Okuno, Y., Nakamura, M., Inada, K., Tokuda, A., Yamashita, M., Hidaka, R., Utsunomiya, H.: Peach (Prunus persica) extract inhibits angiotensin II-induced signal transduction in vascular smooth muscle cells. Food Chem. 139, 371–376 (2013)CrossRefGoogle Scholar
  54. 54.
    Zhang, J., Gu, H.-D., Zhang, L., Tian, Z.-J., Zhang, Z.-Q., Shi, X.-C., Mab, W.-H.: Protective effects of apricot kernel oil on myocardium against ischemia–reperfusion injury in rats. Food Chem. Toxicol. 49, 3136–3141 (2011)CrossRefGoogle Scholar
  55. 55.
    Torrellas, S.A., Lovera, R.G., Escalona, N., Sepúlveda, C., Sotelo, J.L., García, J.: Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem. Eng. J. 279, 788–798 (2015)CrossRefGoogle Scholar
  56. 56.
    Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., Rogalski, M.: Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan Inst. Chem. Eng. 53, 112–121 (2015)CrossRefGoogle Scholar
  57. 57.
    Markovic, S., Stankovic, A., Lopicic, Z., Lazarevic, S., Stojanovic, M., Uskokovic, D.: Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. 3, 716–724 (2015)CrossRefGoogle Scholar
  58. 58.
    Zhou, L., Huang, J., He, B., Zhang, F., Li, H.: Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr. Polym. 101, 574–581 (2014)CrossRefGoogle Scholar
  59. 59.
    Depci, T., Onal, Y., Prisbrey, K.A.: Apricot stone activated carbons adsorption of cyanide as revealed from computational chemistry analysis and experimental study. J. Taiwan Inst. Chem. Eng. 45, 2511–2517 (2014)CrossRefGoogle Scholar
  60. 60.
    Abbas, M., Kaddour, S., Trari, M.: Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 20, 745–751 (2014)CrossRefGoogle Scholar
  61. 61.
    Mouni, L., Merabet, D., Bouzaza, A., Belkhiri, L.: Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 276, 148–153 (2011)CrossRefGoogle Scholar
  62. 62.
    Duranoglu, D., Trochimczuk, A.W., Beker, U.: A comparison study of peach stone and acrylonitrile–divinylbenzene copolymer based activated carbons as chromium(VI) sorbents. Chem. Eng. J. 165, 56–63 (2010)CrossRefGoogle Scholar
  63. 63.
    Petrova, B., Budinova, T., Tsyntsarski, B., Kochkodan, V., Shkavro, Z., Petrov, N.: Removal of aromatic hydrocarbons from water by activated carbon from apricot stones. Chem. Eng. J. 165, 258–264 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations