Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 4, pp 1343–1350 | Cite as

Evaluation of Waste of the Cheese Industry for the Production of Aroma of Roses (Phenylethyl Alcohol)

  • L. Conde-Báez
  • J. Castro-Rosas
  • J. R. Villagómez-Ibarra
  • J. B. Páez-Lerma
  • C. Gómez-AldapaEmail author
Original Paper

ABSTRACT

The whey is a by-product obtained during the manufacture of cheese. It includes three types of whey; sweet (SW), acid (AW) and curd (CW). These residues are rich in lactose and proteins. Practically, there are no studies on the use of the three types of whey, as a substrate of micro-organisms for the production of phenylethyl alcohol (PEA). We assessed the production of PEA by Kluyveromyces marxianus using SW, AW and CW as substrate. Whey pH was adjusted to 4.8, pasteurized at 63 °C/30 min and inoculated with K. marxianus (1 × 106 CFU mL−1). The inoculated whey was embedded in agitation (180 rpm) at 30 °C for 96 h. The identification and quantification of PEA was performed by gas chromatography. In addition, it was determined the percentage of (α–β) lactose by molecular structure with nuclear magnetic resonance. K. marxianus was capable of producing PEA in the three types of whey (SW, AW and CV) in maximum concentrations of 0.96, 0.70, and 0.47 g L−1, respectively. For SW (maximum concentration of PEA), it was found a concentration of β-lactose 82.35 %. Produced by the cheese industry, whey could be used as an alternative for the production of PEA by K.marxianus.

Keywords

Phenylethyl alcohol Dairy waste NMR Lactose Kluyveromyces marxianus 

Notes

Acknowledgments

Thanks to the National Council for Science and Technology (CONACYT) for the scholarship given (263643) and the producer of dairy PROUNILAC for the support access to biological samples.

References

  1. 1.
    Aktas, N., Boyaci, I.H., Mutlu, M., Tanyolac, A.: Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology(RSM). Bioresour. Technol. 97, 2252–2259 (2006)CrossRefGoogle Scholar
  2. 2.
    Prudêncio, S., Müller, C., Fritzen, F.B., Castanho, R., Cunha, C.: Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Res. Int. 56, 92–99 (2014)CrossRefGoogle Scholar
  3. 3.
    Padín, G.C., Díaz, F.M.: Fermentación alcohólica del lactosuero por Kluyveromyces marxianus y solventes orgánicos como extractantes. Rev. Soc. Venez Microbiol. 29, 110–116 (2009)Google Scholar
  4. 4.
    Diniz, H.S., Rodrigues, M., Fietto, G.L., Passos, F.A., Silveira, W.: Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Bioact. Agric. Biotechnol. 3, 111–117 (2013)Google Scholar
  5. 5.
    Arrojo, B., Omil, F., Garrido, J.M., Méndez, R.: Combinación de un filtro anaerobio y un sistema SBR para el tratamiento de las aguas generadas en un laboratorio de análisis de productos lácteos. Afinidad 60, 344–354 (2003)Google Scholar
  6. 6.
    Panesar, P.S., Kennedy, J.F., Gandhi, D.N., Bunko, K.: Bioutilization of whey for lactic acid production. Food Chem. 105, 1–14 (2007)CrossRefGoogle Scholar
  7. 7.
    Dragone, G., Mussatto, I.S., Silva, A.J.B., Teixera, A.J.: Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenergy 35, 1977–1982 (2011)CrossRefGoogle Scholar
  8. 8.
    Prazeres, A.R., Carvalho, F., Rivas, J.: Cheese whey management: a review. J. Environ. Manag. 110, 48–68 (2012)CrossRefGoogle Scholar
  9. 9.
    Spalatelu, C.: Biotechnological valorisation of whey. Innovat. Rom. Food Biotechnol. 10, 1–8 (2012)Google Scholar
  10. 10.
    Prazeres, A.R., Carvalho, F., Rivas, J.: Fenton-like application to pretreated cheese whey wastewater. J. Environ. Manag. 129, 199–205 (2013)CrossRefGoogle Scholar
  11. 11.
    Páez, G., Pérez, A., Araujo, A., Mármol, Z., Rincón, M.: Effect of lactose concentration over β-d-galactosidase production by Kluyveromyces marxianus ATCC 8554 in fed batch cultures. Rev. Soc. Venez Microbiol. 32, 50–54 (2012)Google Scholar
  12. 12.
    Hadiyantoa, L., Ariyantia, D., Ainia, P.A., Pinundia, S.D.: Optimization of Ethanol Production from whey through fed-batch fermentation using Kluyveromyces marxianus. Energy Proc. 47, 108–112 (2014)CrossRefGoogle Scholar
  13. 13.
    Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, M.I., Koutinas, A.A.: Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 145, 710–716 (2014)CrossRefGoogle Scholar
  14. 14.
    Garavaglia, J., Hickmann, F.S., Mara, P.T., Carmo, P., Záchia, A.M.: Bioconversion of l-phenylalanine into 2-phenylethanol by Kluyveromyces marxianus in grape must cultures. World J. Microbiol. Biotechnol. 23, 1273–1279 (2007)CrossRefGoogle Scholar
  15. 15.
    Lomascolo, A., Lesage, M.L., Haon, M., Navarro, D., Antona, C., Faulds, C., Marcel, A.: Evaluation of the potential of Aspergillus niger species for the bioconversion of l-phenylalanine into 2-phenylethanol. World J. Microbiol. Biotechnol. 17, 99–102 (2001)CrossRefGoogle Scholar
  16. 16.
    Etschmann, M.M.W., Bluemke, W., Sell, D., Schrader, J.: Biotechnological production of 2-phenylethanol. Appl. Microbiol. Biotechnol. 59, 1–8 (2002)CrossRefGoogle Scholar
  17. 17.
    Achmon, Y., Zelas, Z., Fishman, A.: Cloning Rosa hybrid phenylacetaldehy de synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl. Microbiol. Biotechnol. (2013). doi: 10.1007/s00253-013-5269-z Google Scholar
  18. 18.
    Wittmann, C., Hans, M., Bluemke, W.: Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19, 1351–1363 (2002)CrossRefGoogle Scholar
  19. 19.
    Morrissey, J.P., Maria, M., Etschmann, W., Schrader, J., Billerbeck, G.M.: Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 32, 3–16 (2015)Google Scholar
  20. 20.
    Clark, G.S.: Phenethyl alcohol. Perfum. Flavor 15, 37–44 (1990)Google Scholar
  21. 21.
    Celińska, E., Kubiak, P., Bialas, W., Dziadas, M., Grajek, W.: Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J. Ind. Microbiol. Biotechnol. 40, 389–392 (2013)CrossRefGoogle Scholar
  22. 22.
    Gupte, A.M., Nair, J.S.: β-galactosidase production and ethanol fermentation from whey using Kluyveromyces marxianus NCIM 3551. J. Sci. Ind. Res. 69, 855–859 (2010)Google Scholar
  23. 23.
    Zhou, X.H., Xu, L.J., Chi, Z., Liu, L.G., Chi, M.Z.: β- Galactosidase over-production by mig1 mutant of Kluyveromyces marxianus KM for efficient hydrolysis of lactose. Biochem. Eng. J. 76, 17–24 (2013)CrossRefGoogle Scholar
  24. 24.
    Fabre, C.E., Blanc, P.J., Goma, G.: Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol. Prog. 14, 270–274 (1998)CrossRefGoogle Scholar
  25. 25.
    Etschmann, M.M.W., Sell, D., Schrader, J.: Screening of yeast for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol. Lett. 25, 531–536 (2003)CrossRefGoogle Scholar
  26. 26.
    Zopellari, F., Bardi, L.: Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotechnol. 30, 607–613 (2013)CrossRefGoogle Scholar
  27. 27.
    Texeira, J.A., Mota, M., Goma, G.: Continuous ethanol production by a flocculating strain of Kluyveromyces marxianus: bioreactor performance. Bioprocess Eng. 5, 123–127 (1990)CrossRefGoogle Scholar
  28. 28.
    APHA: Standard methods for the examination of water and wastewaters, 21st edn. American Public Health Association, Washington (2005)Google Scholar
  29. 29.
    Dalgard, P., Ross, T., Kampermann, L., Neumeyer, K., McMeekin, T.A.: Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 23, 391–404 (1994)CrossRefGoogle Scholar
  30. 30.
    Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 6, 1875–1881 (1990)Google Scholar
  31. 31.
    Etschmann, M.M.W., Schrader, J.: An aqueous–organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol. Appl. Microbiol. Biotechnol. 71, 440–443 (2004)CrossRefGoogle Scholar
  32. 32.
    Stark, D., Münch, T., Sonnleitner, B., Marison, I.W., von Stockar, U.: Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnol. Prog. 18, 514–523 (2003)CrossRefGoogle Scholar
  33. 33.
    Yadav, J.S.S., Bezawada, J., Ajila, C.M., Yan, S., Tyagi, R.D., Surampalli, R.V.: Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour. Technol. 164, 119–127 (2014)CrossRefGoogle Scholar
  34. 34.
    Dragone, G., Mussatto, I.S., Oliveira, M.J., Teixeira, A.J.: Characterization of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 112, 929–935 (2009)CrossRefGoogle Scholar
  35. 35.
    Banat, I.M., Nigam, P., Singh, D., Marchant, R., McHale, A.P.: Ethanol production at elevated temperatures and alcohol concentrations: part I—yeasts in general. World J. Microbiol. Biotechnol. 14, 809–821 (1998)CrossRefGoogle Scholar
  36. 36.
    Singh, D., Nigam, P., Banat, I.M., Marchant, R., McHale, A.P.: Review: ethanol production at elevated temperatures and alcohol concentrations. Part II. Use of Kluyveromyces marxianus IMB3. World J. Microbiol. Biotechnol. 14, 823–834 (1998)CrossRefGoogle Scholar
  37. 37.
    Mendoza, C.M.E., Rivas, N., Emperatriz, D.B., Delahaye, P., Bertsch, A.: Obtención y Caracterización de dos concentrados proteicos a partir de biomasa de Kluyveromyces marxianus var. marxianus cultivada en suero lácteo desproteinizado. FCV-LUZ 16, 315–324 (2007)Google Scholar
  38. 38.
    Äyräpää, T.: The formation of phenethyl alcohol from 14C labelled phenylalanine. J. Inst. Brew. 71, 341–347 (1965)CrossRefGoogle Scholar
  39. 39.
    Eun, K.M., Chang, K.S.: Phenlethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry. Postharvest Biol Technol. 12, 234–239 (2007)Google Scholar
  40. 40.
    Araujo, K., Páez, G., Mármol, Z., Ferrer, J., Ramones, E., Mazzarri, C.I., Rincón, M.: Effect of lactose concentration on the grown kinetics of Kluyveromyces marixianus var. marxianus and production of β-d-galactosidase. Rev. Tec. Ing. Univ. Zulia 1, 64–73 (2007)Google Scholar
  41. 41.
    Mihal, M., Krištofíková, L., Marcŏs, J.: Production of 2-phenylethanol in hybrid system using airlift reactor and immersed hollow fiber membrane module. Chem. Eng. Process 72, 144–152 (2013)CrossRefGoogle Scholar
  42. 42.
    Ghaly, A.E., Kamal, M.A.: Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res. 38, 631–644 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Área Académica de Química (AAQ), Instituto de Ciencias Básicas e Ingeniería (ICBI), Ciudad del ConocimientoUniversidad Autónoma del Estado de Hidalgo (UAEH)Mineral de la ReformaMexico
  2. 2.Departamento de Ingeniería Química-BioquímicaInstituto Tecnológico de DurangoDurangoMexico

Personalised recommendations