Production of Sugars from Wood Waste Materials Via Enzymatic Hydrolysis

Abstract

Wood waste residues (WWRs) are abundant feedstocks for producing energy and fuels. However, using these materials is in part hindered by the lack of uniformity in properties and presence of contaminants. This work aimed at determining the potential of WWRs for sugars production via enzymatic hydrolysis. Pretreatment of four WWR samples was conducted using a mild bisulfite process at 165 °C and 75 min (SPORL process) and particles that passed through a 25 mm mesh screen and were retained by a 12.5 mm mesh screen. The yield from the pretreatment was up to 79 %. Carbohydrates in pretreated materials ranged from 66 to 76 mass%. Results of the enzymatic hydrolysis indicated that the sugar yields (varying from 49 to 60 %) depend on the material. Sugar yields varied from 56 to 66 %. These findings suggest that, although the total yields are relatively lower than those of clean and uniform samples reported in literature, WWRs offer potential for sugars production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    EPA–United States Environmental Protection Agency. Biomass Combined Heat and Power Catalog of Technologies. Washington, DC. (2007). http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf. Accessed 5 July 2015

  2. 2.

    Lyon, S., Bond, B.: What is “urban wood waste”? For. Prod. J. 64(5/6), 166–170 (2014). doi:10.13073/FPJ-D-14-00023

    Google Scholar 

  3. 3.

    McKeever, D.B.: Changes in the U.S. solid waste wood resource, 1990 to 1998. Prepared for publication in BioCycle J. Compost. Recycl. http://infohouse.p2ric.org/ref/20/19924.pdf. Accessed 2 July 2015

  4. 4.

    EPA–United States Environmental Protection Agency. Advancing Sustainable Materials Management: 2013 Fact Sheet, EPA530-R-15-003. http://www.epa.gov/epawaste/nonhaz/municipal/pubs/2013_advncng_smm_fs.pdf. Accessed 10 July 2015

  5. 5.

    Youngquist, J.A., Myers, G.E., Muehl, J.H., Krzysik, A.M., Clemons, C.M.: Composites from Recycled Wood and Plastics. United States Environmental Protection Agency, 2005. Project EPA/600/SR-95/003

  6. 6.

    Faaij, A., van Doorn, J., Curveers, T., Waldheim, L., Olsson, E., van Wijk, A., Daey-Ouwens, C.: Characteristics and availability of biomass waste and residues in the Netherlands for gasification. Biomass Bioenerg. 12(4), 225–240 (1997)

    Article  Google Scholar 

  7. 7.

    Washington State Department of Ecology Air Quality Program. Wood Waste Boiler Survey, # 97-204. (1997). https://fortress.wa.gov/ecy/publications/documents/97204.pdf. Accessed 10 Nov 2015

  8. 8.

    Bernath, R.: Gas boilers vs. waste wood boilers, Western Dry Kiln Association. (2002). https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/5033/Gas_Boilers_ocr.pdf;jsessionid=3906455D4A80E034C9CBA998BF8F608F?sequence=1. Accessed 16 July 2015

  9. 9.

    Sharpe, D.: Comparing waste wood boilers. (2002). http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/5039/Compare_Waste_Wood_ocr.pdf;jsessionid=70436CDAD258E5625B9D18358EF03320?sequence=1. Accessed 14 July 2015

  10. 10.

    Hayter, S., Tanner, S., Comer, K., Demeter, C.: Biomass Cofiring in Coal-Fired Boilers. U.S. Department of Energy, Energy Efficiency and Renewable Energy. DOE/EE-0288. (2004). http://www.nrel.gov/docs/fy04osti/33811.pdf. Accessed 2 Nov 2015

  11. 11.

    Nicholls, N.D., Patterson, S.E., Uloth, E.: Wood and Coal Cofiring in Interior Alaska: Utilizing Woody Biomass From Wildland Defensible-Space Fire Treatments and Other Sources Research Note PNW-RN-551. (2006). http://www.fs.fed.us/pnw/pubs/pnw_rn551.pdf. Accessed 10 July 2015

  12. 12.

    Van Loo, S., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing. Earthscan, London (2012)

    Google Scholar 

  13. 13.

    Wang, S.-Y., Yang, T.-H., Lin, L.-T., Lin, C.-J., Tsai, M.-J.: Fire-retardant-treated low-formaldehyde-emission particleboard made from recycled wood-waste. Bioresour. Technol. 99, 2072–2077 (2008)

    Article  Google Scholar 

  14. 14.

    Wang, S.-Y., Yang, T.-H., Lin, L.-T., Lin, C.-J., Tsai, M.-J.: Properties of low-formaldehyde-emission particleboard made from recycled wood-waste chips sprayed with PMDI/PF resin. Build. Environ. 42(7), 2472–2479 (2007)

    Article  Google Scholar 

  15. 15.

    Solid Waste Association of North America. Successful Approaches to Recycling Urban Wood Waste. General Technical Report FPL-GTR-133. 2002. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison

  16. 16.

    Binod, P., Janu, K.U., Sindhu, R., Pandey, A.: Hydrolysis of lignocellulosic biomass for bioethanol production. In: Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., Gnansounou, E. (eds.) Biofuels, pp. 229–250. Elsevier Academic Press, Burlington (2011)

    Google Scholar 

  17. 17.

    Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., Astrup, T.F.: Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag. 36, 12–23 (2015)

    Article  Google Scholar 

  18. 18.

    Burkhardt, S., Kumar, L., Chandra, R., Saddler, J.: How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues? Biotechnol. Biofuels 6, 90 (2013)

    Article  Google Scholar 

  19. 19.

    Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E., McDonald, A.: Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J. Anal. Appl. Pyrolysis 109, 222–233 (2014). doi:10.1016/j.jaap.2014.06.008

    Article  Google Scholar 

  20. 20.

    Hoadley, R.B.: Understanding Wood: A Craftsman’s Guide to Wood Technology, 1st edn. The Taunton Press, Newtown (2000)

    Google Scholar 

  21. 21.

    Zhang, C., Zhu, J.Y., Gleisner, R., Sessions, J.: Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment. Bioenerg. Res. 5, 978–988 (2012). doi:10.1007/s12155-012-9213-3

    Article  Google Scholar 

  22. 22.

    Cheng, J., Leu, S.-Y., Zhu, J.Y., Gleisner, R.: High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL. Biotechnol. Biofuels 8, 22 (2015). doi:10.1186/s13068-015-0205-3

    Article  Google Scholar 

  23. 23.

    ASTM, Standard Test Method for Ash in Wood D1102-84. American Society for Testing and Materials, West Conshohocken, PA (2013)

  24. 24.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass (Laboratory Analytical Procedure (LAP)), NREL, 2012, Golden, CO

  25. 25.

    ASTM, Standard Test Method for Ethanol-toluene Solubility of Wood D1107-96. American Society for Testing and Materials, West Conshohocken, PA (2013)

  26. 26.

    Zhu, J.Y., Pan, X.J., Wang, C.S., Gleisner, R.: Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100, 2411–2418 (2009)

    Article  Google Scholar 

  27. 27.

    Zhu, J.Y., Chandra, M.S., Gu, F., Gleisner, R., Reiner, R., Sessions, J., Marrs, G., Gao, J., Anderson, D.: Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour. Technol. 179, 390–397 (2015)

    Article  Google Scholar 

  28. 28.

    Zhang, J., Laguna, A., Clemons, C., Wolcott, M.P., Gleisner, R., Zhu, J.Y., Zhang, X.: Effect of hot-pressing temperature on the subsequent enzymatic saccharification and fermentation performance of SPORL pretreated forest biomass. Bioenerg. Res. (2014). doi:10.1007/s12155-014-9530-9

    Google Scholar 

  29. 29.

    Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E.: Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. Biomass Bioenerg. 81, 127–128 (2015)

    Article  Google Scholar 

  30. 30.

    Borrega, M., Nieminen, K., Sixta, H.: Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour. Technol. 102, 10724–10732 (2011)

    Article  Google Scholar 

  31. 31.

    Borrega, M., Nieminen, K., Sixta, H.: Effects of hot water extraction in a batch reactor on the delignification of birch wood. BioResources 6(2), 1890–1903 (2011)

    Google Scholar 

  32. 32.

    ASTM, Standard Test Method for Decomposition Kinetics by Thermogravimetry E1641-04. American Society for Testing and Materials, West Conshohocken, PA (2004)

  33. 33.

    Gao, J., Anderson, D., Levie, B.: Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar). Biotechnol. Biofuels 6, 10 (2013)

    Article  Google Scholar 

  34. 34.

    Donaldson, L.A., Newman, R.H., Vaidya, A.: Nanoscale interactions of polyethylene glycol with thermo-mechanically pre-treated Pinus radiata biofuel substrate. Biotechnol. Bioeng. 111(4), 719–725 (2014)

    Article  Google Scholar 

  35. 35.

    Pelaez-Samaniego, M.R., Yadama, V., Lowell, E., Espinoza-Herrera, R.: A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 47, 1285–1319 (2013)

    Article  Google Scholar 

  36. 36.

    Newman, R.H., Vaidya, A.A., Campion, S.H.: A mathematical model for the inhibitory effects of lignin in enzymatic hydrolysis of lignocellulosics. Bioresour. Technol. 130, 757–762 (2013)

    Article  Google Scholar 

  37. 37.

    Wang, Z., Pecha, B., Westerhof, R.J.M., Kersten, S.R.A., Li, C.-Z., McDonald, A.G., Garcia-Perez, M.: Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind. Eng. Chem. Res. 53, 2940–2955 (2014)

    Article  Google Scholar 

  38. 38.

    Lowary, T.L., Richards, G.N.: Mechanisms of pyrolysis of polysaccharides: cellobiitol as a model for cellulose. Carbohydr. Res. 198, 79–89 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work, as part of the Northwest Advanced Renewables Alliance (NARA), was supported by the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 from the USDA National Institute of Food and Agriculture. The authors acknowledge Dr. J.Y.Zhu, from the USDA Forest Service (Madison, WI) for technical discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Raul Pelaez-Samaniego.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelaez-Samaniego, M.R., Englund, K.R. Production of Sugars from Wood Waste Materials Via Enzymatic Hydrolysis. Waste Biomass Valor 8, 883–892 (2017). https://doi.org/10.1007/s12649-016-9652-8

Download citation

Keywords

  • Wood waste residues
  • Acid pretreatment
  • Enzymatic hydrolysis
  • Sugars