Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 3, pp 883–892 | Cite as

Production of Sugars from Wood Waste Materials Via Enzymatic Hydrolysis

  • Manuel Raul Pelaez-Samaniego
  • Karl R. Englund
Original Paper

Abstract

Wood waste residues (WWRs) are abundant feedstocks for producing energy and fuels. However, using these materials is in part hindered by the lack of uniformity in properties and presence of contaminants. This work aimed at determining the potential of WWRs for sugars production via enzymatic hydrolysis. Pretreatment of four WWR samples was conducted using a mild bisulfite process at 165 °C and 75 min (SPORL process) and particles that passed through a 25 mm mesh screen and were retained by a 12.5 mm mesh screen. The yield from the pretreatment was up to 79 %. Carbohydrates in pretreated materials ranged from 66 to 76 mass%. Results of the enzymatic hydrolysis indicated that the sugar yields (varying from 49 to 60 %) depend on the material. Sugar yields varied from 56 to 66 %. These findings suggest that, although the total yields are relatively lower than those of clean and uniform samples reported in literature, WWRs offer potential for sugars production.

Keywords

Wood waste residues Acid pretreatment Enzymatic hydrolysis Sugars 

Notes

Acknowledgments

This work, as part of the Northwest Advanced Renewables Alliance (NARA), was supported by the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 from the USDA National Institute of Food and Agriculture. The authors acknowledge Dr. J.Y.Zhu, from the USDA Forest Service (Madison, WI) for technical discussions.

References

  1. 1.
    EPA–United States Environmental Protection Agency. Biomass Combined Heat and Power Catalog of Technologies. Washington, DC. (2007). http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf. Accessed 5 July 2015
  2. 2.
    Lyon, S., Bond, B.: What is “urban wood waste”? For. Prod. J. 64(5/6), 166–170 (2014). doi: 10.13073/FPJ-D-14-00023 Google Scholar
  3. 3.
    McKeever, D.B.: Changes in the U.S. solid waste wood resource, 1990 to 1998. Prepared for publication in BioCycle J. Compost. Recycl. http://infohouse.p2ric.org/ref/20/19924.pdf. Accessed 2 July 2015
  4. 4.
    EPA–United States Environmental Protection Agency. Advancing Sustainable Materials Management: 2013 Fact Sheet, EPA530-R-15-003. http://www.epa.gov/epawaste/nonhaz/municipal/pubs/2013_advncng_smm_fs.pdf. Accessed 10 July 2015
  5. 5.
    Youngquist, J.A., Myers, G.E., Muehl, J.H., Krzysik, A.M., Clemons, C.M.: Composites from Recycled Wood and Plastics. United States Environmental Protection Agency, 2005. Project EPA/600/SR-95/003Google Scholar
  6. 6.
    Faaij, A., van Doorn, J., Curveers, T., Waldheim, L., Olsson, E., van Wijk, A., Daey-Ouwens, C.: Characteristics and availability of biomass waste and residues in the Netherlands for gasification. Biomass Bioenerg. 12(4), 225–240 (1997)CrossRefGoogle Scholar
  7. 7.
    Washington State Department of Ecology Air Quality Program. Wood Waste Boiler Survey, # 97-204. (1997). https://fortress.wa.gov/ecy/publications/documents/97204.pdf. Accessed 10 Nov 2015
  8. 8.
    Bernath, R.: Gas boilers vs. waste wood boilers, Western Dry Kiln Association. (2002). https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/5033/Gas_Boilers_ocr.pdf;jsessionid=3906455D4A80E034C9CBA998BF8F608F?sequence=1. Accessed 16 July 2015
  9. 9.
  10. 10.
    Hayter, S., Tanner, S., Comer, K., Demeter, C.: Biomass Cofiring in Coal-Fired Boilers. U.S. Department of Energy, Energy Efficiency and Renewable Energy. DOE/EE-0288. (2004). http://www.nrel.gov/docs/fy04osti/33811.pdf. Accessed 2 Nov 2015
  11. 11.
    Nicholls, N.D., Patterson, S.E., Uloth, E.: Wood and Coal Cofiring in Interior Alaska: Utilizing Woody Biomass From Wildland Defensible-Space Fire Treatments and Other Sources Research Note PNW-RN-551. (2006). http://www.fs.fed.us/pnw/pubs/pnw_rn551.pdf. Accessed 10 July 2015
  12. 12.
    Van Loo, S., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing. Earthscan, London (2012)Google Scholar
  13. 13.
    Wang, S.-Y., Yang, T.-H., Lin, L.-T., Lin, C.-J., Tsai, M.-J.: Fire-retardant-treated low-formaldehyde-emission particleboard made from recycled wood-waste. Bioresour. Technol. 99, 2072–2077 (2008)CrossRefGoogle Scholar
  14. 14.
    Wang, S.-Y., Yang, T.-H., Lin, L.-T., Lin, C.-J., Tsai, M.-J.: Properties of low-formaldehyde-emission particleboard made from recycled wood-waste chips sprayed with PMDI/PF resin. Build. Environ. 42(7), 2472–2479 (2007)CrossRefGoogle Scholar
  15. 15.
    Solid Waste Association of North America. Successful Approaches to Recycling Urban Wood Waste. General Technical Report FPL-GTR-133. 2002. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, MadisonGoogle Scholar
  16. 16.
    Binod, P., Janu, K.U., Sindhu, R., Pandey, A.: Hydrolysis of lignocellulosic biomass for bioethanol production. In: Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., Gnansounou, E. (eds.) Biofuels, pp. 229–250. Elsevier Academic Press, Burlington (2011)CrossRefGoogle Scholar
  17. 17.
    Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., Astrup, T.F.: Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag. 36, 12–23 (2015)CrossRefGoogle Scholar
  18. 18.
    Burkhardt, S., Kumar, L., Chandra, R., Saddler, J.: How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues? Biotechnol. Biofuels 6, 90 (2013)CrossRefGoogle Scholar
  19. 19.
    Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E., McDonald, A.: Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J. Anal. Appl. Pyrolysis 109, 222–233 (2014). doi: 10.1016/j.jaap.2014.06.008 CrossRefGoogle Scholar
  20. 20.
    Hoadley, R.B.: Understanding Wood: A Craftsman’s Guide to Wood Technology, 1st edn. The Taunton Press, Newtown (2000)Google Scholar
  21. 21.
    Zhang, C., Zhu, J.Y., Gleisner, R., Sessions, J.: Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment. Bioenerg. Res. 5, 978–988 (2012). doi: 10.1007/s12155-012-9213-3 CrossRefGoogle Scholar
  22. 22.
    Cheng, J., Leu, S.-Y., Zhu, J.Y., Gleisner, R.: High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL. Biotechnol. Biofuels 8, 22 (2015). doi: 10.1186/s13068-015-0205-3 CrossRefGoogle Scholar
  23. 23.
    ASTM, Standard Test Method for Ash in Wood D1102-84. American Society for Testing and Materials, West Conshohocken, PA (2013)Google Scholar
  24. 24.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass (Laboratory Analytical Procedure (LAP)), NREL, 2012, Golden, COGoogle Scholar
  25. 25.
    ASTM, Standard Test Method for Ethanol-toluene Solubility of Wood D1107-96. American Society for Testing and Materials, West Conshohocken, PA (2013)Google Scholar
  26. 26.
    Zhu, J.Y., Pan, X.J., Wang, C.S., Gleisner, R.: Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100, 2411–2418 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhu, J.Y., Chandra, M.S., Gu, F., Gleisner, R., Reiner, R., Sessions, J., Marrs, G., Gao, J., Anderson, D.: Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour. Technol. 179, 390–397 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, J., Laguna, A., Clemons, C., Wolcott, M.P., Gleisner, R., Zhu, J.Y., Zhang, X.: Effect of hot-pressing temperature on the subsequent enzymatic saccharification and fermentation performance of SPORL pretreated forest biomass. Bioenerg. Res. (2014). doi: 10.1007/s12155-014-9530-9 Google Scholar
  29. 29.
    Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, M., Lowell, E.: Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. Biomass Bioenerg. 81, 127–128 (2015)CrossRefGoogle Scholar
  30. 30.
    Borrega, M., Nieminen, K., Sixta, H.: Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour. Technol. 102, 10724–10732 (2011)CrossRefGoogle Scholar
  31. 31.
    Borrega, M., Nieminen, K., Sixta, H.: Effects of hot water extraction in a batch reactor on the delignification of birch wood. BioResources 6(2), 1890–1903 (2011)Google Scholar
  32. 32.
    ASTM, Standard Test Method for Decomposition Kinetics by Thermogravimetry E1641-04. American Society for Testing and Materials, West Conshohocken, PA (2004)Google Scholar
  33. 33.
    Gao, J., Anderson, D., Levie, B.: Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar). Biotechnol. Biofuels 6, 10 (2013)CrossRefGoogle Scholar
  34. 34.
    Donaldson, L.A., Newman, R.H., Vaidya, A.: Nanoscale interactions of polyethylene glycol with thermo-mechanically pre-treated Pinus radiata biofuel substrate. Biotechnol. Bioeng. 111(4), 719–725 (2014)CrossRefGoogle Scholar
  35. 35.
    Pelaez-Samaniego, M.R., Yadama, V., Lowell, E., Espinoza-Herrera, R.: A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 47, 1285–1319 (2013)CrossRefGoogle Scholar
  36. 36.
    Newman, R.H., Vaidya, A.A., Campion, S.H.: A mathematical model for the inhibitory effects of lignin in enzymatic hydrolysis of lignocellulosics. Bioresour. Technol. 130, 757–762 (2013)CrossRefGoogle Scholar
  37. 37.
    Wang, Z., Pecha, B., Westerhof, R.J.M., Kersten, S.R.A., Li, C.-Z., McDonald, A.G., Garcia-Perez, M.: Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind. Eng. Chem. Res. 53, 2940–2955 (2014)CrossRefGoogle Scholar
  38. 38.
    Lowary, T.L., Richards, G.N.: Mechanisms of pyrolysis of polysaccharides: cellobiitol as a model for cellulose. Carbohydr. Res. 198, 79–89 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Composite Materials and Engineering CenterWashington State UniversityPullmanUSA
  2. 2.Faculty of Chemical SciencesUniversidad de CuencaCuencaEcuador

Personalised recommendations