Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO–Al2O3 Catalysts

Abstract

The energetic utilization of biogas, a gas mixture consisting mainly of CH4 and CO2 via the reforming or the dry reforming of methane reaction is of enormous interest as it converts these two greenhouse gases into synthesis gas (H2/CO mixtures). Nickel based catalysts have been extensively studied for both reactions, as they are highly active, but they suffer from fast deactivation by coking that can even lead to reactor blocking. It is thus desirable to learn more about their coking behavior, and their structural and catalytic stability. In this work, un-promoted and promoted with 6.0 wt% MgO or CaO alumina supported nickel catalysts (8.0 wt% Ni) were studied for the biogas reforming reaction. Supported nickel catalysts were synthesized following the wet impregnation method. The as synthesized Ni/Al2O3, Ni/MgO–Al2O3, Ni/CaO–Al2O3 samples were characterized by various techniques such as XRD, SEM, ICP and BET. Catalytic testing experiments were performed in a fixed-bed reactor at temperatures ranging from 500 to 850 °C and a feed gas mixture with a molar CH4/CO2 ratio of 1.5 simulating an ideal model biogas. It was concluded that the Ni/MgO–Al2O3 and Ni/CaO–Al2O3 catalysts exhibit higher values for XCH4, XCO2, YH2 compared to the ones of the Ni/Al catalyst for temperature ranging between 550 and 750 °C, while the opposite is evidenced for T > 750 °C. It was also evidenced that the presence of magnesium or calcium oxide in the support ensures a quite stable H2/CO molar ratio approaching to unity (ideal for the produced syngas) even for low reaction temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Sovacool, B.K., Mukherjee, I.: Conseptualising and measuring energy security: a synthesized approach. Energy 36, 5343–5355 (2011)

    Article  Google Scholar 

  2. 2.

    Odell, P.R.: The long-term future for energy resources’ exploitation. Energy Environ. 21, 785–802 (2010)

    Article  Google Scholar 

  3. 3.

    Winzer, C.: Conceptualizing energy security. Energy Policy 46, 36–48 (2012)

    Article  Google Scholar 

  4. 4.

    Zhang, Z.X.: China’s energy security, the Malacca dilemma and responses. Energy Policy 39, 7612–7615 (2011)

    Article  Google Scholar 

  5. 5.

    van der Pol, T.D., van Lerland, E.C., Gabbert, S., Weikard, H.P., Hendrix, E.M.T.: Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. J. Environ. Manag. 154, 40–47 (2015)

    Article  Google Scholar 

  6. 6.

    Wiréhn, L., Danielsson, A., Simone, T., Neset, S.: Assessment of composite index methods for agricultural vulnerability to climate change. J. Environ. Manag. 156, 70–80 (2015)

    Article  Google Scholar 

  7. 7.

    Usman, M., Daud, W.W.M.A., Abbas, H.F.: Dry reforming of methane: Influence of process parameters: a review. Renew Sustain Energy Rev 45, 710–744 (2015)

    Article  Google Scholar 

  8. 8.

    Abushammala, M.F., Basri, N.E.A., Basri, H., El-Shafie, A.H., Kadhum, A.A.H.: Regional landfills methane emission inventory in Malaysia. Waste Manag. Resour. 29(8), 863–873 (2011)

    Article  Google Scholar 

  9. 9.

    Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A.: Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag. 30(10), 1860–1870 (2010)

    Article  Google Scholar 

  10. 10.

    Chattanathan, S.A., Sdhikari, A., McVey, M., Fasina, O.: Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int. J. Hydrog. Energy 39(35), 19905–19911 (2014)

    Article  Google Scholar 

  11. 11.

    Alves, H.J., Bley, C., Niklevicz, R.R., Frigo, E.P., Frigo, M.S., Coimbra-Araújo, C.H.: Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrog. Energy 38(13), 5215–5225 (2013)

    Article  Google Scholar 

  12. 12.

    Bereketidou, O.A., Goula, M.A.: Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts. Catal. Today 195, 93–100 (2012)

    Article  Google Scholar 

  13. 13.

    Damrongsak, D., Tippayawong, N.: Experimental investigation of an automotive air-conditioning system driven by a small biogas engine. Appl. Therm. Eng. 30, 400–405 (2010)

    Article  Google Scholar 

  14. 14.

    Poeschl, M., Ward, S., Owende, P.: Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 14, 1782–1797 (2010)

    Article  Google Scholar 

  15. 15.

    Solomon, K.R., Lora, E.E.S.: Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33, 1101–1107 (2009)

    Article  Google Scholar 

  16. 16.

    Deng, Y., Xu, J., Liu, Y., Mancl, K.: Biogas as a sustainable energy source in China: regional development strategy application and decision making. Renew. Sustain. Energy Rev. 35, 294–303 (2014)

    Article  Google Scholar 

  17. 17.

    Li, D., Nakagawa, Y., Tomishige, K.: Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A 408, 1–24 (2011)

    Article  Google Scholar 

  18. 18.

    Nieva, M.A., Villaverde, M.M., Monzón, A., Garetto, T.F., Marchi, A.J.: Steam-methane reforming at low temperature on nickel-based catalysts. Chem. Eng. J. 235, 158–166 (2014)

    Article  Google Scholar 

  19. 19.

    Carvalho, L.S., Martins, A.R., Reyes, P., Oportus, M., Albonoz, A., Vicentini, V., Rangel, M.C.: Preparation and characterization of Ru/MgO–Al2O3 catalysts for methane steam reforming. Catal. Today 142, 52–60 (2009)

    Article  Google Scholar 

  20. 20.

    Larimi, A.S., Alavi, S.M.: Ceria–zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas. Fuel 102, 366–371 (2012)

    Article  Google Scholar 

  21. 21.

    Liu, D., Quek, X.Y., Cheo, W.N.E., Lau, R., Borgna, A., Yang, Y.: MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal–support interaction. J. Catal. 266, 380–390 (2009)

    Article  Google Scholar 

  22. 22.

    Courson, C., Makaga, E., Petit, C., Kiennemann, A.: Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal. Today 63, 427–437 (2000)

    Article  Google Scholar 

  23. 23.

    Hayakawa, T., Harihara, H., Andersen, A.G., Suzuki, K., Yasuda, H., Tsunoda, T., Hamakawa, S., York, A.P.E., Yoon, Y.S., Shimizu, M., Takehira, K.: Sustainable Ni/Ca1−xSrxTiO3 catalyst in situ prepared in partial oxidation of methane to synthesis gas. Appl. Catal. A 149, 391 (1997)

    Article  Google Scholar 

  24. 24.

    Provendier, H., Petit, C., Estournès, C., Libs, S., Kiennemann, A.: Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl. Catal. A 180, 163–173 (1999)

    Article  Google Scholar 

  25. 25.

    Tao, K., Zhang, Y., Terao, S., Tsubaki, N.: Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4. Catal. Today 153, 150–155 (2010)

    Article  Google Scholar 

  26. 26.

    Goula, M.A., Lemonidou, A.A., Efstathiou, A.M.: Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO–Al2O3: catalysts studied by various transient techniques. J. Catal. 161, 626–640 (1996)

    Article  Google Scholar 

  27. 27.

    Juan-Juan, J., Roman-Martınez, M.C., Illan-Gomez, M.J.: Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments. Appl. Catal. A 355, 27–32 (2009)

    Article  Google Scholar 

  28. 28.

    Sahli, N., Petit, C., Roger, A.C., Kiennemann, A., Libs, S., Bettahar, M.M.: Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal. Today 113, 187–193 (2006)

    Article  Google Scholar 

  29. 29.

    Xu, J.J., Zhou, W., Li, Z., Wang, J., Ma, J.: Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int. J. Hydrog. Energy 34, 6646–6654 (2009)

    Article  Google Scholar 

  30. 30.

    Aghamohammadi, S., Haghighi, M., Karimipour, S.: A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol–gel methods used for CO2 reforming of methane. J. Nanosci. Nanotechnol. 13, 4872–4882 (2013)

    Article  Google Scholar 

  31. 31.

    Dias, J.A.C., Assaf, J.M.: Influence of calcium content in Ni/CaO/g–Al2O3 catalysts for CO2-reforming of methane. Catal. Today 85, 59–68 (2003)

    Article  Google Scholar 

  32. 32.

    Fan, M.S., Abdullah, A.Z., Bhatia, S.: Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: process optimization. Int. J. Hydrog. Energy 36, 4875–4886 (2011)

    Article  Google Scholar 

  33. 33.

    Garcıa, V., Fernandez, J.J., Ruız, W., Mondragon, F., Moreno, A.: Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catal. Commun. 11, 240–246 (2009)

    Article  Google Scholar 

  34. 34.

    Roh, H.S., Jun, K.W.: Carbon dioxide reforming of methane over Ni catalysts supported on Al2O3 modified with La2O3, MgO and CaO. Catal. Surv. Asia 12, 239–252 (2008)

    Article  Google Scholar 

  35. 35.

    Choudhary, V.R., Uphade, B.S., Mamman, A.S.: Large enhancement in methane-to-syngas conversion activity of supported Ni catalysts due to precoating of catalyst supports with MgO, CaO or rare-earth oxide. Catal. Lett. 32, 387–390 (1995)

    Article  Google Scholar 

  36. 36.

    Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L., Park, S.B.: Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl. Catal. A 340, 183–190 (2008)

    Article  Google Scholar 

  37. 37.

    Ranjbar, A., Rezaei, M.: Preparation of nickel catalysts supported on CaO·2Al2O3 for methane reforming with carbon dioxide. Int. J. Hydrog. Energy 37, 6356–6362 (2012)

    Article  Google Scholar 

  38. 38.

    Choong, C.K.S., Zhong, Z., Huang, L., Wang, Z., Peng Ang, T., Borgna, A., Lin, J., Hong, L., Chen, L.: Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism. Appl. Catal. A 407, 145–154 (2011)

    Article  Google Scholar 

  39. 39.

    Goula, M.A., Charisiou, N.D., Papageridis, K.N., Delimitis, A., Pachatouridou, E., Iliopoulou, E.F.: Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. Int. J. Hydrog. Energy 40(10), 9183–9200 (2015)

    Article  Google Scholar 

  40. 40.

    Charisiou, N.D., Siakavelas, G., Papageridis, K.N., Baklavaridis, A., Tzounis, L., Avraam, D.G., Goula, M.A.: Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. J. Nat. Gas Sci. Eng. 31, 164–183 (2016)

    Article  Google Scholar 

  41. 41.

    Cheng, C.K., Foo, S.Y., Adesina, A.A.: Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal. Today 178, 25–33 (2011)

    Article  Google Scholar 

  42. 42.

    Dou, B., Wang, C., Song, Y., Chen, H., Xu, Y.: Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol. Energy Convers. Manag. 78, 253–259 (2014)

    Article  Google Scholar 

  43. 43.

    Boukha, Z., Jiménez-González, C., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions. Appl. Catal. B 158–159, 190–201 (2014)

    Article  Google Scholar 

  44. 44.

    Jiménez-González, C., Boukha, Z., de Rivas, B., Delgado, J.J., Cauqui, M.A., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl. Catal. A 466, 9–20 (2013)

    Article  Google Scholar 

  45. 45.

    Bobadilla, L.F., Penkova, A., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A.: Glycerol steam reforming on bimetallic NiSn/CeO2–MgO–Al2O3 catalysts: influence of the support, reaction parameters and deactivation/regeneration processes. Appl. Catal. A 492, 38–47 (2015)

    Article  Google Scholar 

  46. 46.

    Melchor-Hernández, C., Gómez-Cortés, A., Díaz, G.: Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel 107, 828–835 (2013)

    Article  Google Scholar 

  47. 47.

    Franchini, C.A., Aranzaez, W., de Farias, A.M.D., Pecchi, G., Fraga, M.A.: Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl. Catal. B 147, 193–202 (2014)

    Article  Google Scholar 

  48. 48.

    Seung-hoon, K., Jae-sun, J., Eun-hyeok, Y., Kwan-Young, L., Ju, M.D.: Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalysts. Catal. Today 228, 145–151 (2014)

    Article  Google Scholar 

  49. 49.

    Zhai, X., Ding, S., Liu, Z., Jin, Y., Cheng, Y.: Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int. J. Hydrog. Energy 36, 482–489 (2011)

    Article  Google Scholar 

  50. 50.

    Nikoo, M.K., Amin, N.A.S.: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 92, 678–691 (2011)

    Article  Google Scholar 

  51. 51.

    Abdollahifar, M., Haghighi, M., Babaluo, A.A.: Syngas production via dry reforming of methane over Ni/Al2O3–MgO nanocatalyst synthesized using ultrasound energy. J. Ind. Eng. Chem. 20, 1845–1851 (2014)

    Article  Google Scholar 

  52. 52.

    Son, I.H., Lee, S.J., Roh, H.S.: Hydrogen production from carbon dioxide reforming of methane over highly active and stable MgO promoted Co–Ni/γ-Al2O3 catalyst. Int. J. Hydrog. Energy 39, 3762–3770 (2014)

    Article  Google Scholar 

  53. 53.

    Mette, K., Kühl, S., Tarasov, A., Düdder, H., Kähler, K., Muhler, M., Schlögl, R., Behrens, M.: Redox dynamics of Ni catalysts in CO2 reforming of methane. Catal. Today 242, 101–110 (2015)

    Article  Google Scholar 

  54. 54.

    Elias, K.F.M., Lucredio, A.F., Assaf, E.M.: Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming. Int. J. Hydrog. Energy 38, 4407–4417 (2013)

    Article  Google Scholar 

  55. 55.

    Xu, L., Song, H., Chou, L.: Ordered mesoporous MgO-Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int. J. Hydrog. Energy 38, 7307–7325 (2013)

    Article  Google Scholar 

  56. 56.

    Martinez, R., Romero, E., Guimon, C., Bilbao, R.: CO2 reforming of methane over coprecipitated Ni–Al catalysts modified with lanthanum. Appl. Catal. A 274, 139–149 (2004)

    Article  Google Scholar 

  57. 57.

    Horiuchi, T., Hidaka, H., Fukui, T., Kubo, Y., Horio, M., Suzuki, K., Mori, T.: Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures. Appl. Catal. A Gen. 167, 195–202 (1998)

    Article  Google Scholar 

  58. 58.

    Yang, R., Xing, C., Lv, C., Shi, L., Tsubaki, N.: Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4. Appl. Catal. A 385, 92–100 (2010)

    Article  Google Scholar 

  59. 59.

    Rezaei, M., Alavi, S.M., Sahebdelfar, S., Bai, P., Liu, X., Yan, Z.F.: CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Appl. Catal. B 77, 346–354 (2008)

    Article  Google Scholar 

  60. 60.

    Hua, W., Jin, L., He, X., Liu, J., Hu, H.: Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catal. Commun. 11, 968–972 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. D. Charisiou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charisiou, N.D., Baklavaridis, A., Papadakis, V.G. et al. Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO–Al2O3 Catalysts. Waste Biomass Valor 7, 725–736 (2016). https://doi.org/10.1007/s12649-016-9627-9

Download citation

Keywords

  • Biogas
  • Synthesis gas
  • Dry reforming
  • Supported nickel catalysts