Waste and Biomass Valorization

, Volume 7, Issue 4, pp 725–736 | Cite as

Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO–Al2O3 Catalysts

  • N. D. CharisiouEmail author
  • A. Baklavaridis
  • V. G. Papadakis
  • M. A. Goula
Original Paper


The energetic utilization of biogas, a gas mixture consisting mainly of CH4 and CO2 via the reforming or the dry reforming of methane reaction is of enormous interest as it converts these two greenhouse gases into synthesis gas (H2/CO mixtures). Nickel based catalysts have been extensively studied for both reactions, as they are highly active, but they suffer from fast deactivation by coking that can even lead to reactor blocking. It is thus desirable to learn more about their coking behavior, and their structural and catalytic stability. In this work, un-promoted and promoted with 6.0 wt% MgO or CaO alumina supported nickel catalysts (8.0 wt% Ni) were studied for the biogas reforming reaction. Supported nickel catalysts were synthesized following the wet impregnation method. The as synthesized Ni/Al2O3, Ni/MgO–Al2O3, Ni/CaO–Al2O3 samples were characterized by various techniques such as XRD, SEM, ICP and BET. Catalytic testing experiments were performed in a fixed-bed reactor at temperatures ranging from 500 to 850 °C and a feed gas mixture with a molar CH4/CO2 ratio of 1.5 simulating an ideal model biogas. It was concluded that the Ni/MgO–Al2O3 and Ni/CaO–Al2O3 catalysts exhibit higher values for XCH4, XCO2, YH2 compared to the ones of the Ni/Al catalyst for temperature ranging between 550 and 750 °C, while the opposite is evidenced for T > 750 °C. It was also evidenced that the presence of magnesium or calcium oxide in the support ensures a quite stable H2/CO molar ratio approaching to unity (ideal for the produced syngas) even for low reaction temperatures.


Biogas Synthesis gas Dry reforming Supported nickel catalysts 


  1. 1.
    Sovacool, B.K., Mukherjee, I.: Conseptualising and measuring energy security: a synthesized approach. Energy 36, 5343–5355 (2011)CrossRefGoogle Scholar
  2. 2.
    Odell, P.R.: The long-term future for energy resources’ exploitation. Energy Environ. 21, 785–802 (2010)CrossRefGoogle Scholar
  3. 3.
    Winzer, C.: Conceptualizing energy security. Energy Policy 46, 36–48 (2012)CrossRefGoogle Scholar
  4. 4.
    Zhang, Z.X.: China’s energy security, the Malacca dilemma and responses. Energy Policy 39, 7612–7615 (2011)CrossRefGoogle Scholar
  5. 5.
    van der Pol, T.D., van Lerland, E.C., Gabbert, S., Weikard, H.P., Hendrix, E.M.T.: Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. J. Environ. Manag. 154, 40–47 (2015)CrossRefGoogle Scholar
  6. 6.
    Wiréhn, L., Danielsson, A., Simone, T., Neset, S.: Assessment of composite index methods for agricultural vulnerability to climate change. J. Environ. Manag. 156, 70–80 (2015)CrossRefGoogle Scholar
  7. 7.
    Usman, M., Daud, W.W.M.A., Abbas, H.F.: Dry reforming of methane: Influence of process parameters: a review. Renew Sustain Energy Rev 45, 710–744 (2015)CrossRefGoogle Scholar
  8. 8.
    Abushammala, M.F., Basri, N.E.A., Basri, H., El-Shafie, A.H., Kadhum, A.A.H.: Regional landfills methane emission inventory in Malaysia. Waste Manag. Resour. 29(8), 863–873 (2011)CrossRefGoogle Scholar
  9. 9.
    Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A.: Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag. 30(10), 1860–1870 (2010)CrossRefGoogle Scholar
  10. 10.
    Chattanathan, S.A., Sdhikari, A., McVey, M., Fasina, O.: Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int. J. Hydrog. Energy 39(35), 19905–19911 (2014)CrossRefGoogle Scholar
  11. 11.
    Alves, H.J., Bley, C., Niklevicz, R.R., Frigo, E.P., Frigo, M.S., Coimbra-Araújo, C.H.: Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrog. Energy 38(13), 5215–5225 (2013)CrossRefGoogle Scholar
  12. 12.
    Bereketidou, O.A., Goula, M.A.: Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts. Catal. Today 195, 93–100 (2012)CrossRefGoogle Scholar
  13. 13.
    Damrongsak, D., Tippayawong, N.: Experimental investigation of an automotive air-conditioning system driven by a small biogas engine. Appl. Therm. Eng. 30, 400–405 (2010)CrossRefGoogle Scholar
  14. 14.
    Poeschl, M., Ward, S., Owende, P.: Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 14, 1782–1797 (2010)CrossRefGoogle Scholar
  15. 15.
    Solomon, K.R., Lora, E.E.S.: Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33, 1101–1107 (2009)CrossRefGoogle Scholar
  16. 16.
    Deng, Y., Xu, J., Liu, Y., Mancl, K.: Biogas as a sustainable energy source in China: regional development strategy application and decision making. Renew. Sustain. Energy Rev. 35, 294–303 (2014)CrossRefGoogle Scholar
  17. 17.
    Li, D., Nakagawa, Y., Tomishige, K.: Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A 408, 1–24 (2011)CrossRefGoogle Scholar
  18. 18.
    Nieva, M.A., Villaverde, M.M., Monzón, A., Garetto, T.F., Marchi, A.J.: Steam-methane reforming at low temperature on nickel-based catalysts. Chem. Eng. J. 235, 158–166 (2014)CrossRefGoogle Scholar
  19. 19.
    Carvalho, L.S., Martins, A.R., Reyes, P., Oportus, M., Albonoz, A., Vicentini, V., Rangel, M.C.: Preparation and characterization of Ru/MgO–Al2O3 catalysts for methane steam reforming. Catal. Today 142, 52–60 (2009)CrossRefGoogle Scholar
  20. 20.
    Larimi, A.S., Alavi, S.M.: Ceria–zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas. Fuel 102, 366–371 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, D., Quek, X.Y., Cheo, W.N.E., Lau, R., Borgna, A., Yang, Y.: MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal–support interaction. J. Catal. 266, 380–390 (2009)CrossRefGoogle Scholar
  22. 22.
    Courson, C., Makaga, E., Petit, C., Kiennemann, A.: Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal. Today 63, 427–437 (2000)CrossRefGoogle Scholar
  23. 23.
    Hayakawa, T., Harihara, H., Andersen, A.G., Suzuki, K., Yasuda, H., Tsunoda, T., Hamakawa, S., York, A.P.E., Yoon, Y.S., Shimizu, M., Takehira, K.: Sustainable Ni/Ca1−xSrxTiO3 catalyst in situ prepared in partial oxidation of methane to synthesis gas. Appl. Catal. A 149, 391 (1997)CrossRefGoogle Scholar
  24. 24.
    Provendier, H., Petit, C., Estournès, C., Libs, S., Kiennemann, A.: Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl. Catal. A 180, 163–173 (1999)CrossRefGoogle Scholar
  25. 25.
    Tao, K., Zhang, Y., Terao, S., Tsubaki, N.: Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4. Catal. Today 153, 150–155 (2010)CrossRefGoogle Scholar
  26. 26.
    Goula, M.A., Lemonidou, A.A., Efstathiou, A.M.: Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO–Al2O3: catalysts studied by various transient techniques. J. Catal. 161, 626–640 (1996)CrossRefGoogle Scholar
  27. 27.
    Juan-Juan, J., Roman-Martınez, M.C., Illan-Gomez, M.J.: Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments. Appl. Catal. A 355, 27–32 (2009)CrossRefGoogle Scholar
  28. 28.
    Sahli, N., Petit, C., Roger, A.C., Kiennemann, A., Libs, S., Bettahar, M.M.: Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal. Today 113, 187–193 (2006)CrossRefGoogle Scholar
  29. 29.
    Xu, J.J., Zhou, W., Li, Z., Wang, J., Ma, J.: Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int. J. Hydrog. Energy 34, 6646–6654 (2009)CrossRefGoogle Scholar
  30. 30.
    Aghamohammadi, S., Haghighi, M., Karimipour, S.: A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol–gel methods used for CO2 reforming of methane. J. Nanosci. Nanotechnol. 13, 4872–4882 (2013)CrossRefGoogle Scholar
  31. 31.
    Dias, J.A.C., Assaf, J.M.: Influence of calcium content in Ni/CaO/g–Al2O3 catalysts for CO2-reforming of methane. Catal. Today 85, 59–68 (2003)CrossRefGoogle Scholar
  32. 32.
    Fan, M.S., Abdullah, A.Z., Bhatia, S.: Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: process optimization. Int. J. Hydrog. Energy 36, 4875–4886 (2011)CrossRefGoogle Scholar
  33. 33.
    Garcıa, V., Fernandez, J.J., Ruız, W., Mondragon, F., Moreno, A.: Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catal. Commun. 11, 240–246 (2009)CrossRefGoogle Scholar
  34. 34.
    Roh, H.S., Jun, K.W.: Carbon dioxide reforming of methane over Ni catalysts supported on Al2O3 modified with La2O3, MgO and CaO. Catal. Surv. Asia 12, 239–252 (2008)CrossRefGoogle Scholar
  35. 35.
    Choudhary, V.R., Uphade, B.S., Mamman, A.S.: Large enhancement in methane-to-syngas conversion activity of supported Ni catalysts due to precoating of catalyst supports with MgO, CaO or rare-earth oxide. Catal. Lett. 32, 387–390 (1995)CrossRefGoogle Scholar
  36. 36.
    Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L., Park, S.B.: Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl. Catal. A 340, 183–190 (2008)CrossRefGoogle Scholar
  37. 37.
    Ranjbar, A., Rezaei, M.: Preparation of nickel catalysts supported on CaO·2Al2O3 for methane reforming with carbon dioxide. Int. J. Hydrog. Energy 37, 6356–6362 (2012)CrossRefGoogle Scholar
  38. 38.
    Choong, C.K.S., Zhong, Z., Huang, L., Wang, Z., Peng Ang, T., Borgna, A., Lin, J., Hong, L., Chen, L.: Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism. Appl. Catal. A 407, 145–154 (2011)CrossRefGoogle Scholar
  39. 39.
    Goula, M.A., Charisiou, N.D., Papageridis, K.N., Delimitis, A., Pachatouridou, E., Iliopoulou, E.F.: Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. Int. J. Hydrog. Energy 40(10), 9183–9200 (2015)CrossRefGoogle Scholar
  40. 40.
    Charisiou, N.D., Siakavelas, G., Papageridis, K.N., Baklavaridis, A., Tzounis, L., Avraam, D.G., Goula, M.A.: Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. J. Nat. Gas Sci. Eng. 31, 164–183 (2016)CrossRefGoogle Scholar
  41. 41.
    Cheng, C.K., Foo, S.Y., Adesina, A.A.: Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal. Today 178, 25–33 (2011)CrossRefGoogle Scholar
  42. 42.
    Dou, B., Wang, C., Song, Y., Chen, H., Xu, Y.: Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol. Energy Convers. Manag. 78, 253–259 (2014)CrossRefGoogle Scholar
  43. 43.
    Boukha, Z., Jiménez-González, C., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions. Appl. Catal. B 158–159, 190–201 (2014)CrossRefGoogle Scholar
  44. 44.
    Jiménez-González, C., Boukha, Z., de Rivas, B., Delgado, J.J., Cauqui, M.A., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., López-Fonseca, R.: Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl. Catal. A 466, 9–20 (2013)CrossRefGoogle Scholar
  45. 45.
    Bobadilla, L.F., Penkova, A., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A.: Glycerol steam reforming on bimetallic NiSn/CeO2–MgO–Al2O3 catalysts: influence of the support, reaction parameters and deactivation/regeneration processes. Appl. Catal. A 492, 38–47 (2015)CrossRefGoogle Scholar
  46. 46.
    Melchor-Hernández, C., Gómez-Cortés, A., Díaz, G.: Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. Fuel 107, 828–835 (2013)CrossRefGoogle Scholar
  47. 47.
    Franchini, C.A., Aranzaez, W., de Farias, A.M.D., Pecchi, G., Fraga, M.A.: Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl. Catal. B 147, 193–202 (2014)CrossRefGoogle Scholar
  48. 48.
    Seung-hoon, K., Jae-sun, J., Eun-hyeok, Y., Kwan-Young, L., Ju, M.D.: Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalysts. Catal. Today 228, 145–151 (2014)CrossRefGoogle Scholar
  49. 49.
    Zhai, X., Ding, S., Liu, Z., Jin, Y., Cheng, Y.: Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int. J. Hydrog. Energy 36, 482–489 (2011)CrossRefGoogle Scholar
  50. 50.
    Nikoo, M.K., Amin, N.A.S.: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 92, 678–691 (2011)CrossRefGoogle Scholar
  51. 51.
    Abdollahifar, M., Haghighi, M., Babaluo, A.A.: Syngas production via dry reforming of methane over Ni/Al2O3–MgO nanocatalyst synthesized using ultrasound energy. J. Ind. Eng. Chem. 20, 1845–1851 (2014)CrossRefGoogle Scholar
  52. 52.
    Son, I.H., Lee, S.J., Roh, H.S.: Hydrogen production from carbon dioxide reforming of methane over highly active and stable MgO promoted Co–Ni/γ-Al2O3 catalyst. Int. J. Hydrog. Energy 39, 3762–3770 (2014)CrossRefGoogle Scholar
  53. 53.
    Mette, K., Kühl, S., Tarasov, A., Düdder, H., Kähler, K., Muhler, M., Schlögl, R., Behrens, M.: Redox dynamics of Ni catalysts in CO2 reforming of methane. Catal. Today 242, 101–110 (2015)CrossRefGoogle Scholar
  54. 54.
    Elias, K.F.M., Lucredio, A.F., Assaf, E.M.: Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming. Int. J. Hydrog. Energy 38, 4407–4417 (2013)CrossRefGoogle Scholar
  55. 55.
    Xu, L., Song, H., Chou, L.: Ordered mesoporous MgO-Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int. J. Hydrog. Energy 38, 7307–7325 (2013)CrossRefGoogle Scholar
  56. 56.
    Martinez, R., Romero, E., Guimon, C., Bilbao, R.: CO2 reforming of methane over coprecipitated Ni–Al catalysts modified with lanthanum. Appl. Catal. A 274, 139–149 (2004)CrossRefGoogle Scholar
  57. 57.
    Horiuchi, T., Hidaka, H., Fukui, T., Kubo, Y., Horio, M., Suzuki, K., Mori, T.: Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures. Appl. Catal. A Gen. 167, 195–202 (1998)CrossRefGoogle Scholar
  58. 58.
    Yang, R., Xing, C., Lv, C., Shi, L., Tsubaki, N.: Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4. Appl. Catal. A 385, 92–100 (2010)CrossRefGoogle Scholar
  59. 59.
    Rezaei, M., Alavi, S.M., Sahebdelfar, S., Bai, P., Liu, X., Yan, Z.F.: CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Appl. Catal. B 77, 346–354 (2008)CrossRefGoogle Scholar
  60. 60.
    Hua, W., Jin, L., He, X., Liu, J., Hu, H.: Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catal. Commun. 11, 968–972 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • N. D. Charisiou
    • 1
    • 2
    Email author
  • A. Baklavaridis
    • 1
  • V. G. Papadakis
    • 2
  • M. A. Goula
    • 1
  1. 1.Department of Environmental and Pollution Control EngineeringTechnological Educational Institute of Western Macedonia (TEIWM)Koila, KozaniGreece
  2. 2.Department of Environmental and Natural Resources ManagementPatras UniversityAgrinioGreece

Personalised recommendations